Identifier
Mp00046:
Ordered trees
—to graph⟶
Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
Images
=>
Cc0021;cc-rep-0Cc0020;cc-rep-1
[]=>([],1)=>[1]=>[1]
[[]]=>([(0,1)],2)=>[1,1]=>[1,1]
[[],[]]=>([(0,2),(1,2)],3)=>[2,1]=>[1,2]
[[[]]]=>([(0,2),(1,2)],3)=>[2,1]=>[1,2]
[[],[],[]]=>([(0,3),(1,3),(2,3)],4)=>[3,1]=>[1,3]
[[],[[]]]=>([(0,3),(1,2),(2,3)],4)=>[2,2]=>[2,2]
[[[]],[]]=>([(0,3),(1,2),(2,3)],4)=>[2,2]=>[2,2]
[[[],[]]]=>([(0,3),(1,3),(2,3)],4)=>[3,1]=>[1,3]
[[[[]]]]=>([(0,3),(1,2),(2,3)],4)=>[2,2]=>[2,2]
[[],[],[],[]]=>([(0,4),(1,4),(2,4),(3,4)],5)=>[4,1]=>[1,4]
[[],[],[[]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[2,3]
[[],[[]],[]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[2,3]
[[],[[],[]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[2,3]
[[],[[[]]]]=>([(0,4),(1,3),(2,3),(2,4)],5)=>[3,2]=>[2,3]
[[[]],[],[]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[2,3]
[[[]],[[]]]=>([(0,4),(1,3),(2,3),(2,4)],5)=>[3,2]=>[2,3]
[[[],[]],[]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[2,3]
[[[[]]],[]]=>([(0,4),(1,3),(2,3),(2,4)],5)=>[3,2]=>[2,3]
[[[],[],[]]]=>([(0,4),(1,4),(2,4),(3,4)],5)=>[4,1]=>[1,4]
[[[],[[]]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[2,3]
[[[[]],[]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[2,3]
[[[[],[]]]]=>([(0,4),(1,4),(2,3),(3,4)],5)=>[3,2]=>[2,3]
[[[[[]]]]]=>([(0,4),(1,3),(2,3),(2,4)],5)=>[3,2]=>[2,3]
[[],[],[],[],[]]=>([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>[5,1]=>[1,5]
[[],[],[],[[]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[],[],[[]],[]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[],[],[[],[]]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[],[],[[[]]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[],[[]],[],[]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[],[[]],[[]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[],[[],[]],[]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[],[[[]]],[]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[],[[],[],[]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[],[[],[[]]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[],[[[]],[]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[],[[[],[]]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[],[[[[]]]]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[[]],[],[],[]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[]],[],[[]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[]],[[]],[]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[]],[[],[]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[]],[[[]]]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[[],[]],[],[]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[[]]],[],[]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[],[]],[[]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[[]]],[[]]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[[],[],[]],[]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[],[[]]],[]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[]],[]],[]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[],[]]],[]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[[[]]]],[]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[[],[],[],[]]]=>([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>[5,1]=>[1,5]
[[[],[],[[]]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[],[[]],[]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[],[[],[]]]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[],[[[]]]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[[]],[],[]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[[]],[[]]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[],[]],[]]]=>([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[[[]]],[]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[[],[],[]]]]=>([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[[],[[]]]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[[]],[]]]]=>([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>[3,3]=>[3,3]
[[[[[],[]]]]]=>([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>[4,2]=>[2,4]
[[[[[[]]]]]]=>([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>[3,3]=>[3,3]
[[],[],[],[],[],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>[6,1]=>[1,6]
[[],[],[],[],[[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[],[],[[]],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[],[],[[],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[],[],[[[]]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[],[[]],[],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[],[[]],[[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[],[[],[]],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[],[[[]]],[]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[],[[],[],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[],[[],[[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[],[[[]],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[],[[[],[]]]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[2,5]
[[],[],[[[[]]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[],[[]],[],[],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[[]],[],[[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[]],[[]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[]],[[],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[]],[[[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[],[[],[]],[],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[[[]]],[],[]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[[],[]],[[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[]]],[[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[],[[],[],[]],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[[],[[]]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[]],[]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[],[]]],[]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[2,5]
[[],[[[[]]]],[]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[],[[],[],[],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[[],[],[[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[],[[]],[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[],[[],[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[],[[[]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[]],[],[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[]],[[]]]]=>([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[],[]],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[[]]],[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[],[],[]]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[],[[[],[[]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[[]],[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[],[[[[],[]]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[],[[[[[]]]]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[3,4]
[[[]],[],[],[],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[]],[],[],[[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[],[[]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[],[[],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[],[[[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[[]],[],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[[]],[[]]]=>([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[[],[]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[[[]]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[[],[],[]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[]],[[],[[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[[[]],[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[]],[[[],[]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[[]],[[[[]]]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[3,4]
[[[],[]],[],[],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[[]]],[],[],[]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[]],[],[[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[]]],[],[[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[],[]],[[]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[]]],[[]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[],[]],[[],[]]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[2,5]
[[[],[]],[[[]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[[[]]],[[],[]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[[[]]],[[[]]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[3,4]
[[[],[],[]],[],[]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[[]]],[],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[]],[]],[],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[],[]]],[],[]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[2,5]
[[[[[]]]],[],[]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[[],[],[]],[[]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[[]]],[[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[]],[]],[[]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[],[]]],[[]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[[[[]]]],[[]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[3,4]
[[[],[],[],[]],[]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[],[[]]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[],[[]],[]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[],[[],[]]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[],[[[]]]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[]],[],[]],[]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[]],[[]]],[]]=>([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[],[]],[]],[]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[[]]],[]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[],[],[]]],[]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[[],[[]]]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[[]],[]]],[]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[[],[]]]],[]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[[[[[]]]]],[]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[3,4]
[[[],[],[],[],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>[6,1]=>[1,6]
[[[],[],[],[[]]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[],[[]],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[],[[],[]]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[],[[[]]]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[[]],[],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[[]],[[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[],[[],[]],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[[[]]],[]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[[],[],[]]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[],[[],[[]]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[],[[[]],[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[],[[[],[]]]]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[2,5]
[[[],[[[[]]]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[[[]],[],[],[]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[[]],[],[[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[]],[[]],[]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[]],[[],[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[]],[[[]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[],[]],[],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[[[]]],[],[]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[[],[]],[[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[[]]],[[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[],[],[]],[]]]=>([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[[],[[]]],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[[]],[]],[]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[[],[]]],[]]]=>([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>[5,2]=>[2,5]
[[[[[[]]]],[]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[[[],[],[],[]]]]=>([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[[],[],[[]]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[],[[]],[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[],[[],[]]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[],[[[]]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[[]],[],[]]]]=>([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[[]],[[]]]]]=>([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[[],[]],[]]]]=>([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>[4,3]=>[3,4]
[[[[[[]]],[]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[[],[],[]]]]]=>([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>[5,2]=>[2,5]
[[[[[],[[]]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[[[]],[]]]]]=>([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>[4,3]=>[3,4]
[[[[[[],[]]]]]]=>([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>[4,3]=>[3,4]
[[[[[[[]]]]]]]=>([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)=>[4,3]=>[3,4]
Map
to graph
Description
Return the undirected graph obtained from the tree nodes and edges.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Map
rotate back to front
Description
The back to front rotation of an integer composition.
searching the database
Sorry, this map was not found in the database.