Identifier
Images
([],1) => ([],1) => ([],1) => ([],1)
([],2) => ([],1) => ([],1) => ([],1)
([(0,1)],2) => ([(0,1)],2) => ([],2) => ([],2)
([],3) => ([],1) => ([],1) => ([],1)
([(1,2)],3) => ([(0,1)],2) => ([],2) => ([],2)
([(0,2),(1,2)],3) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([],4) => ([],1) => ([],1) => ([],1)
([(2,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(1,3),(2,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(0,3),(1,2)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(0,3),(1,2),(2,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => ([],2) => ([],2)
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([],5) => ([],1) => ([],1) => ([],1)
([(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,3)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4)
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5) => ([],5)
([],6) => ([],1) => ([],1) => ([],1)
([(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,5),(3,4)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,2),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(2,3)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2)
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3)
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
>>> Load all 209 entries. <<<Map
core
Description
The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
Map
Ore closure
Description
The Ore closure of a graph.
The Ore closure of a connected graph G has the same vertices as G, and the smallest set of edges containing the edges of G such that for any two vertices u and v whose sum of degrees is at least the number of vertices, then (u,v) is also an edge.
For disconnected graphs, we compute the closure separately for each component.
The Ore closure of a connected graph G has the same vertices as G, and the smallest set of edges containing the edges of G such that for any two vertices u and v whose sum of degrees is at least the number of vertices, then (u,v) is also an edge.
For disconnected graphs, we compute the closure separately for each component.
searching the database
Sorry, this map was not found in the database.