Identifier
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
Mp00114: Permutations connectivity setBinary words
Images
=>
Cc0012;cc-rep-0
[(1,2)]=>[2,1]=>0 [(1,2),(3,4)]=>[2,1,4,3]=>010 [(1,3),(2,4)]=>[3,4,1,2]=>000 [(1,4),(2,3)]=>[3,4,2,1]=>000 [(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>01010 [(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>00010 [(1,4),(2,3),(5,6)]=>[3,4,2,1,6,5]=>00010 [(1,5),(2,3),(4,6)]=>[3,5,2,6,1,4]=>00000 [(1,6),(2,3),(4,5)]=>[3,5,2,6,4,1]=>00000 [(1,6),(2,4),(3,5)]=>[4,5,6,2,3,1]=>00000 [(1,5),(2,4),(3,6)]=>[4,5,6,2,1,3]=>00000 [(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>00000 [(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>00000 [(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>01000 [(1,2),(3,6),(4,5)]=>[2,1,5,6,4,3]=>01000 [(1,3),(2,6),(4,5)]=>[3,5,1,6,4,2]=>00000 [(1,4),(2,6),(3,5)]=>[4,5,6,1,3,2]=>00000 [(1,5),(2,6),(3,4)]=>[4,5,6,3,1,2]=>00000 [(1,6),(2,5),(3,4)]=>[4,5,6,3,2,1]=>00000 [(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>0101010 [(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>0001010 [(1,4),(2,3),(5,6),(7,8)]=>[3,4,2,1,6,5,8,7]=>0001010 [(1,5),(2,3),(4,6),(7,8)]=>[3,5,2,6,1,4,8,7]=>0000010 [(1,6),(2,3),(4,5),(7,8)]=>[3,5,2,6,4,1,8,7]=>0000010 [(1,7),(2,3),(4,5),(6,8)]=>[3,5,2,7,4,8,1,6]=>0000000 [(1,8),(2,3),(4,5),(6,7)]=>[3,5,2,7,4,8,6,1]=>0000000 [(1,8),(2,4),(3,5),(6,7)]=>[4,5,7,2,3,8,6,1]=>0000000 [(1,7),(2,4),(3,5),(6,8)]=>[4,5,7,2,3,8,1,6]=>0000000 [(1,6),(2,4),(3,5),(7,8)]=>[4,5,6,2,3,1,8,7]=>0000010 [(1,5),(2,4),(3,6),(7,8)]=>[4,5,6,2,1,3,8,7]=>0000010 [(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>0000010 [(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>0000010 [(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>0100010 [(1,2),(3,6),(4,5),(7,8)]=>[2,1,5,6,4,3,8,7]=>0100010 [(1,3),(2,6),(4,5),(7,8)]=>[3,5,1,6,4,2,8,7]=>0000010 [(1,4),(2,6),(3,5),(7,8)]=>[4,5,6,1,3,2,8,7]=>0000010 [(1,5),(2,6),(3,4),(7,8)]=>[4,5,6,3,1,2,8,7]=>0000010 [(1,6),(2,5),(3,4),(7,8)]=>[4,5,6,3,2,1,8,7]=>0000010 [(1,7),(2,5),(3,4),(6,8)]=>[4,5,7,3,2,8,1,6]=>0000000 [(1,8),(2,5),(3,4),(6,7)]=>[4,5,7,3,2,8,6,1]=>0000000 [(1,8),(2,6),(3,4),(5,7)]=>[4,6,7,3,8,2,5,1]=>0000000 [(1,7),(2,6),(3,4),(5,8)]=>[4,6,7,3,8,2,1,5]=>0000000 [(1,6),(2,7),(3,4),(5,8)]=>[4,6,7,3,8,1,2,5]=>0000000 [(1,5),(2,7),(3,4),(6,8)]=>[4,5,7,3,1,8,2,6]=>0000000 [(1,4),(2,7),(3,5),(6,8)]=>[4,5,7,1,3,8,2,6]=>0000000 [(1,3),(2,7),(4,5),(6,8)]=>[3,5,1,7,4,8,2,6]=>0000000 [(1,2),(3,7),(4,5),(6,8)]=>[2,1,5,7,4,8,3,6]=>0100000 [(1,2),(3,8),(4,5),(6,7)]=>[2,1,5,7,4,8,6,3]=>0100000 [(1,3),(2,8),(4,5),(6,7)]=>[3,5,1,7,4,8,6,2]=>0000000 [(1,4),(2,8),(3,5),(6,7)]=>[4,5,7,1,3,8,6,2]=>0000000 [(1,5),(2,8),(3,4),(6,7)]=>[4,5,7,3,1,8,6,2]=>0000000 [(1,6),(2,8),(3,4),(5,7)]=>[4,6,7,3,8,1,5,2]=>0000000 [(1,7),(2,8),(3,4),(5,6)]=>[4,6,7,3,8,5,1,2]=>0000000 [(1,8),(2,7),(3,4),(5,6)]=>[4,6,7,3,8,5,2,1]=>0000000 [(1,8),(2,7),(3,5),(4,6)]=>[5,6,7,8,3,4,2,1]=>0000000 [(1,7),(2,8),(3,5),(4,6)]=>[5,6,7,8,3,4,1,2]=>0000000 [(1,6),(2,8),(3,5),(4,7)]=>[5,6,7,8,3,1,4,2]=>0000000 [(1,5),(2,8),(3,6),(4,7)]=>[5,6,7,8,1,3,4,2]=>0000000 [(1,4),(2,8),(3,6),(5,7)]=>[4,6,7,1,8,3,5,2]=>0000000 [(1,3),(2,8),(4,6),(5,7)]=>[3,6,1,7,8,4,5,2]=>0000000 [(1,2),(3,8),(4,6),(5,7)]=>[2,1,6,7,8,4,5,3]=>0100000 [(1,2),(3,7),(4,6),(5,8)]=>[2,1,6,7,8,4,3,5]=>0100000 [(1,3),(2,7),(4,6),(5,8)]=>[3,6,1,7,8,4,2,5]=>0000000 [(1,4),(2,7),(3,6),(5,8)]=>[4,6,7,1,8,3,2,5]=>0000000 [(1,5),(2,7),(3,6),(4,8)]=>[5,6,7,8,1,3,2,4]=>0000000 [(1,6),(2,7),(3,5),(4,8)]=>[5,6,7,8,3,1,2,4]=>0000000 [(1,7),(2,6),(3,5),(4,8)]=>[5,6,7,8,3,2,1,4]=>0000000 [(1,8),(2,6),(3,5),(4,7)]=>[5,6,7,8,3,2,4,1]=>0000000 [(1,8),(2,5),(3,6),(4,7)]=>[5,6,7,8,2,3,4,1]=>0000000 [(1,7),(2,5),(3,6),(4,8)]=>[5,6,7,8,2,3,1,4]=>0000000 [(1,6),(2,5),(3,7),(4,8)]=>[5,6,7,8,2,1,3,4]=>0000000 [(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>0000000 [(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>0000000 [(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>0000000 [(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>0100000 [(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>0100000 [(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>0000000 [(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>0000000 [(1,5),(2,4),(3,7),(6,8)]=>[4,5,7,2,1,8,3,6]=>0000000 [(1,6),(2,4),(3,7),(5,8)]=>[4,6,7,2,8,1,3,5]=>0000000 [(1,7),(2,4),(3,6),(5,8)]=>[4,6,7,2,8,3,1,5]=>0000000 [(1,8),(2,4),(3,6),(5,7)]=>[4,6,7,2,8,3,5,1]=>0000000 [(1,8),(2,3),(4,6),(5,7)]=>[3,6,2,7,8,4,5,1]=>0000000 [(1,7),(2,3),(4,6),(5,8)]=>[3,6,2,7,8,4,1,5]=>0000000 [(1,6),(2,3),(4,7),(5,8)]=>[3,6,2,7,8,1,4,5]=>0000000 [(1,5),(2,3),(4,7),(6,8)]=>[3,5,2,7,1,8,4,6]=>0000000 [(1,4),(2,3),(5,7),(6,8)]=>[3,4,2,1,7,8,5,6]=>0001000 [(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>0001000 [(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>0101000 [(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,7,8,6,5]=>0101000 [(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,7,8,6,5]=>0001000 [(1,4),(2,3),(5,8),(6,7)]=>[3,4,2,1,7,8,6,5]=>0001000 [(1,5),(2,3),(4,8),(6,7)]=>[3,5,2,7,1,8,6,4]=>0000000 [(1,6),(2,3),(4,8),(5,7)]=>[3,6,2,7,8,1,5,4]=>0000000 [(1,7),(2,3),(4,8),(5,6)]=>[3,6,2,7,8,5,1,4]=>0000000 [(1,8),(2,3),(4,7),(5,6)]=>[3,6,2,7,8,5,4,1]=>0000000 [(1,8),(2,4),(3,7),(5,6)]=>[4,6,7,2,8,5,3,1]=>0000000 [(1,7),(2,4),(3,8),(5,6)]=>[4,6,7,2,8,5,1,3]=>0000000 [(1,6),(2,4),(3,8),(5,7)]=>[4,6,7,2,8,1,5,3]=>0000000 [(1,5),(2,4),(3,8),(6,7)]=>[4,5,7,2,1,8,6,3]=>0000000 [(1,4),(2,5),(3,8),(6,7)]=>[4,5,7,1,2,8,6,3]=>0000000 [(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,7,2,8,6,4]=>0000000 [(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,7,3,8,6,4]=>0100000 [(1,2),(3,6),(4,8),(5,7)]=>[2,1,6,7,8,3,5,4]=>0100000 [(1,3),(2,6),(4,8),(5,7)]=>[3,6,1,7,8,2,5,4]=>0000000 [(1,4),(2,6),(3,8),(5,7)]=>[4,6,7,1,8,2,5,3]=>0000000 [(1,5),(2,6),(3,8),(4,7)]=>[5,6,7,8,1,2,4,3]=>0000000 [(1,6),(2,5),(3,8),(4,7)]=>[5,6,7,8,2,1,4,3]=>0000000 [(1,7),(2,5),(3,8),(4,6)]=>[5,6,7,8,2,4,1,3]=>0000000 [(1,8),(2,5),(3,7),(4,6)]=>[5,6,7,8,2,4,3,1]=>0000000 [(1,8),(2,6),(3,7),(4,5)]=>[5,6,7,8,4,2,3,1]=>0000000 [(1,7),(2,6),(3,8),(4,5)]=>[5,6,7,8,4,2,1,3]=>0000000 [(1,6),(2,7),(3,8),(4,5)]=>[5,6,7,8,4,1,2,3]=>0000000 [(1,5),(2,7),(3,8),(4,6)]=>[5,6,7,8,1,4,2,3]=>0000000 [(1,4),(2,7),(3,8),(5,6)]=>[4,6,7,1,8,5,2,3]=>0000000 [(1,3),(2,7),(4,8),(5,6)]=>[3,6,1,7,8,5,2,4]=>0000000 [(1,2),(3,7),(4,8),(5,6)]=>[2,1,6,7,8,5,3,4]=>0100000 [(1,2),(3,8),(4,7),(5,6)]=>[2,1,6,7,8,5,4,3]=>0100000 [(1,3),(2,8),(4,7),(5,6)]=>[3,6,1,7,8,5,4,2]=>0000000 [(1,4),(2,8),(3,7),(5,6)]=>[4,6,7,1,8,5,3,2]=>0000000 [(1,5),(2,8),(3,7),(4,6)]=>[5,6,7,8,1,4,3,2]=>0000000 [(1,6),(2,8),(3,7),(4,5)]=>[5,6,7,8,4,1,3,2]=>0000000 [(1,7),(2,8),(3,6),(4,5)]=>[5,6,7,8,4,3,1,2]=>0000000 [(1,8),(2,7),(3,6),(4,5)]=>[5,6,7,8,4,3,2,1]=>0000000 [(1,10),(2,9),(3,8),(4,7),(5,6)]=>[6,7,8,9,10,5,4,3,2,1]=>000000000 [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]=>[7,8,9,10,11,12,6,5,4,3,2,1]=>00000000000
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
connectivity set
Description
The connectivity set of a permutation as a binary word.
According to [2], also known as the global ascent set.
The connectivity set is
$$C(\pi)=\{i\in [n-1] | \forall 1 \leq j \leq i < k \leq n : \pi(j) < \pi(k)\}.$$
For $n > 1$ it can also be described as the set of occurrences of the mesh pattern
$$([1,2], \{(0,2),(1,0),(1,1),(2,0),(2,1) \})$$
or equivalently
$$([1,2], \{(0,1),(0,2),(1,1),(1,2),(2,0) \}),$$
see [3].
The permutation is connected, when the connectivity set is empty.