Identifier
Mp00098: Alternating sign matrices link patternPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00114: Permutations connectivity setBinary words
Images
=>
Cc0017;cc-rep-0Cc0012;cc-rep-1
[[1]]=>[(1,2)]=>[2,1]=>[2,1]=>0 [[1,0],[0,1]]=>[(1,4),(2,3)]=>[4,3,2,1]=>[4,3,2,1]=>000 [[0,1],[1,0]]=>[(1,2),(3,4)]=>[2,1,4,3]=>[2,4,1,3]=>000 [[1,0,0],[0,1,0],[0,0,1]]=>[(1,6),(2,5),(3,4)]=>[6,5,4,3,2,1]=>[6,5,4,3,2,1]=>00000 [[0,1,0],[1,0,0],[0,0,1]]=>[(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[2,4,6,1,3,5]=>00000 [[1,0,0],[0,0,1],[0,1,0]]=>[(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>[3,6,2,5,4,1]=>00000 [[0,1,0],[1,-1,1],[0,1,0]]=>[(1,2),(3,6),(4,5)]=>[2,1,6,5,4,3]=>[6,5,2,4,1,3]=>00000 [[0,0,1],[1,0,0],[0,1,0]]=>[(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>[3,6,2,5,4,1]=>00000 [[0,1,0],[0,0,1],[1,0,0]]=>[(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[2,4,6,1,3,5]=>00000 [[0,0,1],[0,1,0],[1,0,0]]=>[(1,4),(2,3),(5,6)]=>[4,3,2,1,6,5]=>[4,3,2,6,1,5]=>00000 [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]=>[(1,8),(2,7),(3,6),(4,5)]=>[8,7,6,5,4,3,2,1]=>[8,7,6,5,4,3,2,1]=>0000000 [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]=>[(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>[6,5,2,4,8,1,3,7]=>0000000 [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]=>[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,5,8,2,4,7,6,1]=>0000000 [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]=>[(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>[2,8,5,7,4,6,1,3]=>0000000 [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]=>[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,5,8,2,4,7,6,1]=>0000000 [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]=>[(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>[6,5,2,4,8,1,3,7]=>0000000 [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]=>[(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>[3,6,2,5,4,8,1,7]=>0000000 [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]=>[(1,8),(2,7),(3,4),(5,6)]=>[8,7,4,3,6,5,2,1]=>[4,8,3,7,6,5,2,1]=>0000000 [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]=>[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,4,6,8,1,3,5,7]=>0000000 [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]=>[(1,8),(2,3),(4,7),(5,6)]=>[8,3,2,7,6,5,4,1]=>[8,7,3,6,2,5,4,1]=>0000000 [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]=>[(1,2),(3,8),(4,7),(5,6)]=>[2,1,8,7,6,5,4,3]=>[8,7,6,5,2,4,1,3]=>0000000 [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]=>[(1,8),(2,3),(4,7),(5,6)]=>[8,3,2,7,6,5,4,1]=>[8,7,3,6,2,5,4,1]=>0000000 [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]=>[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,4,6,8,1,3,5,7]=>0000000 [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]=>[(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>[4,3,2,6,8,1,5,7]=>0000000 [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]=>[(1,8),(2,7),(3,4),(5,6)]=>[8,7,4,3,6,5,2,1]=>[4,8,3,7,6,5,2,1]=>0000000 [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]=>[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,4,6,8,1,3,5,7]=>0000000 [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]=>[(1,8),(2,7),(3,4),(5,6)]=>[8,7,4,3,6,5,2,1]=>[4,8,3,7,6,5,2,1]=>0000000 [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]=>[(1,8),(2,3),(4,7),(5,6)]=>[8,3,2,7,6,5,4,1]=>[8,7,3,6,2,5,4,1]=>0000000 [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]=>[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,4,6,8,1,3,5,7]=>0000000 [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]=>[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,4,6,8,1,3,5,7]=>0000000 [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]=>[(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>[4,3,2,6,8,1,5,7]=>0000000 [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]=>[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,5,8,2,4,7,6,1]=>0000000 [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]=>[(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>[2,8,5,7,4,6,1,3]=>0000000 [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]=>[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,5,8,2,4,7,6,1]=>0000000 [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]=>[(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>[6,5,2,4,8,1,3,7]=>0000000 [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]=>[(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>[3,6,2,5,4,8,1,7]=>0000000 [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]=>[(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>[5,4,3,8,2,7,6,1]=>0000000 [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]=>[(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>[8,7,2,4,6,1,3,5]=>0000000 [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]=>[(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>[5,4,3,8,2,7,6,1]=>0000000 [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]=>[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,5,8,2,4,7,6,1]=>0000000 [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]=>[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,4,6,8,1,3,5,7]=>0000000 [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]=>[(1,6),(2,5),(3,4),(7,8)]=>[6,5,4,3,2,1,8,7]=>[6,5,4,3,2,8,1,7]=>0000000 [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]=>[(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>[3,6,2,5,4,8,1,7]=>0000000 [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]=>[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,4,6,8,1,3,5,7]=>0000000 [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]=>[(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>[4,3,2,6,8,1,5,7]=>0000000 [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]=>[(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>[2,8,5,7,4,6,1,3]=>0000000 [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]=>[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,5,8,2,4,7,6,1]=>0000000 [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]=>[(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>[8,7,2,4,6,1,3,5]=>0000000 [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]=>[(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>[5,4,3,8,2,7,6,1]=>0000000 [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]=>[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,5,8,2,4,7,6,1]=>0000000 [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]=>[(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>[8,7,2,4,6,1,3,5]=>0000000 [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]=>[(1,4),(2,3),(5,8),(6,7)]=>[4,3,2,1,8,7,6,5]=>[4,8,3,7,2,6,1,5]=>0000000
Map
link pattern
Description
Sends an alternating sign matrix to the link pattern of the corresponding fully packed loop configuration.
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00067Foata bijection.
Map
connectivity set
Description
The connectivity set of a permutation as a binary word.
According to [2], also known as the global ascent set.
The connectivity set is
$$C(\pi)=\{i\in [n-1] | \forall 1 \leq j \leq i < k \leq n : \pi(j) < \pi(k)\}.$$
For $n > 1$ it can also be described as the set of occurrences of the mesh pattern
$$([1,2], \{(0,2),(1,0),(1,1),(2,0),(2,1) \})$$
or equivalently
$$([1,2], \{(0,1),(0,2),(1,1),(1,2),(2,0) \}),$$
see [3].
The permutation is connected, when the connectivity set is empty.