Identifier
Mp00058: Perfect matchings to permutationPermutations
Mp00149: Permutations Lehmer code rotationPermutations
Mp00088: Permutations Kreweras complementPermutations
Mp00114: Permutations connectivity setBinary words
Images
=>
Cc0012;cc-rep-0
[(1,2)]=>[2,1]=>[1,2]=>[2,1]=>0 [(1,2),(3,4)]=>[2,1,4,3]=>[3,2,1,4]=>[4,3,2,1]=>000 [(1,3),(2,4)]=>[3,4,1,2]=>[4,1,3,2]=>[3,1,4,2]=>000 [(1,4),(2,3)]=>[4,3,2,1]=>[1,2,3,4]=>[2,3,4,1]=>000 [(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[3,2,5,4,1,6]=>[6,3,2,5,4,1]=>00000 [(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>[4,5,2,3,1,6]=>[6,4,5,2,3,1]=>00000 [(1,4),(2,3),(5,6)]=>[4,3,2,1,6,5]=>[5,4,3,2,1,6]=>[6,5,4,3,2,1]=>00000 [(1,5),(2,3),(4,6)]=>[5,3,2,6,1,4]=>[6,4,3,1,5,2]=>[5,1,4,3,6,2]=>00000 [(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>[1,5,4,2,3,6]=>[2,5,6,4,3,1]=>00000 [(1,6),(2,4),(3,5)]=>[6,4,5,2,3,1]=>[1,6,2,5,3,4]=>[2,4,6,1,5,3]=>00000 [(1,5),(2,4),(3,6)]=>[5,4,6,2,1,3]=>[6,5,1,4,3,2]=>[4,1,6,5,3,2]=>00000 [(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>[5,6,1,3,4,2]=>[4,1,5,6,2,3]=>00000 [(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>[4,6,2,1,5,3]=>[5,4,1,2,6,3]=>00000 [(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>[3,2,6,1,5,4]=>[5,3,2,1,6,4]=>00000 [(1,2),(3,6),(4,5)]=>[2,1,6,5,4,3]=>[3,2,1,4,5,6]=>[4,3,2,5,6,1]=>00000 [(1,3),(2,6),(4,5)]=>[3,6,1,5,4,2]=>[4,1,3,2,5,6]=>[3,5,4,2,6,1]=>00000 [(1,4),(2,6),(3,5)]=>[4,6,5,1,3,2]=>[5,1,2,4,3,6]=>[3,4,6,5,2,1]=>00000 [(1,5),(2,6),(3,4)]=>[5,6,4,3,1,2]=>[6,1,2,3,5,4]=>[3,4,5,1,6,2]=>00000 [(1,6),(2,5),(3,4)]=>[6,5,4,3,2,1]=>[1,2,3,4,5,6]=>[2,3,4,5,6,1]=>00000 [(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[3,2,5,4,7,6,1,8]=>[8,3,2,5,4,7,6,1]=>0000000 [(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>[4,5,2,3,7,6,1,8]=>[8,4,5,2,3,7,6,1]=>0000000 [(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>[5,4,3,2,7,6,1,8]=>[8,5,4,3,2,7,6,1]=>0000000 [(1,5),(2,3),(4,6),(7,8)]=>[5,3,2,6,1,4,8,7]=>[6,4,3,7,2,5,1,8]=>[8,6,4,3,7,2,5,1]=>0000000 [(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>[7,4,3,6,5,2,1,8]=>[8,7,4,3,6,5,2,1]=>0000000 [(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[1,5,4,7,6,2,3,8]=>[2,7,8,4,3,6,5,1]=>0000000 [(1,8),(2,4),(3,5),(6,7)]=>[8,4,5,2,3,7,6,1]=>[1,6,7,4,5,2,3,8]=>[2,7,8,5,6,3,4,1]=>0000000 [(1,6),(2,4),(3,5),(7,8)]=>[6,4,5,2,3,1,8,7]=>[7,5,6,3,4,2,1,8]=>[8,7,5,6,3,4,2,1]=>0000000 [(1,5),(2,4),(3,6),(7,8)]=>[5,4,6,2,1,3,8,7]=>[6,5,7,3,2,4,1,8]=>[8,6,5,7,3,2,4,1]=>0000000 [(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>[5,6,7,2,3,4,1,8]=>[8,5,6,7,2,3,4,1]=>0000000 [(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>[4,6,2,7,3,5,1,8]=>[8,4,6,2,7,3,5,1]=>0000000 [(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>[3,2,6,7,4,5,1,8]=>[8,3,2,6,7,4,5,1]=>0000000 [(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>[3,2,7,6,5,4,1,8]=>[8,3,2,7,6,5,4,1]=>0000000 [(1,3),(2,6),(4,5),(7,8)]=>[3,6,1,5,4,2,8,7]=>[4,7,2,6,5,3,1,8]=>[8,4,7,2,6,5,3,1]=>0000000 [(1,4),(2,6),(3,5),(7,8)]=>[4,6,5,1,3,2,8,7]=>[5,7,6,2,4,3,1,8]=>[8,5,7,6,2,4,3,1]=>0000000 [(1,5),(2,6),(3,4),(7,8)]=>[5,6,4,3,1,2,8,7]=>[6,7,5,4,2,3,1,8]=>[8,6,7,5,4,2,3,1]=>0000000 [(1,6),(2,5),(3,4),(7,8)]=>[6,5,4,3,2,1,8,7]=>[7,6,5,4,3,2,1,8]=>[8,7,6,5,4,3,2,1]=>0000000 [(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>[3,2,1,7,6,4,5,8]=>[4,3,2,7,8,6,5,1]=>0000000 [(1,3),(2,8),(4,5),(6,7)]=>[3,8,1,5,4,7,6,2]=>[4,1,3,7,6,2,5,8]=>[3,7,4,2,8,6,5,1]=>0000000 [(1,8),(2,7),(3,5),(4,6)]=>[8,7,5,6,3,4,2,1]=>[1,2,8,3,7,4,5,6]=>[2,3,5,7,8,1,6,4]=>0000000 [(1,7),(2,8),(3,5),(4,6)]=>[7,8,5,6,3,4,1,2]=>[8,1,7,2,6,3,5,4]=>[3,5,7,1,8,6,4,2]=>0000000 [(1,6),(2,8),(3,5),(4,7)]=>[6,8,5,7,3,1,4,2]=>[7,1,8,2,6,4,3,5]=>[3,5,8,7,1,6,2,4]=>0000000 [(1,4),(2,8),(3,6),(5,7)]=>[4,8,6,1,7,3,5,2]=>[5,1,8,3,2,7,4,6]=>[3,6,5,8,2,1,7,4]=>0000000 [(1,2),(3,8),(4,6),(5,7)]=>[2,1,8,6,7,4,5,3]=>[3,2,1,8,4,7,5,6]=>[4,3,2,6,8,1,7,5]=>0000000 [(1,7),(2,6),(3,5),(4,8)]=>[7,6,5,8,3,2,1,4]=>[8,7,6,1,5,4,3,2]=>[5,1,8,7,6,4,3,2]=>0000000 [(1,8),(2,6),(3,5),(4,7)]=>[8,6,5,7,3,2,4,1]=>[1,8,7,2,6,5,3,4]=>[2,5,8,1,7,6,4,3]=>0000000 [(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>[6,7,8,1,3,4,5,2]=>[5,1,6,7,8,2,3,4]=>0000000 [(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>[5,7,8,2,1,4,6,3]=>[6,5,1,7,2,8,3,4]=>0000000 [(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>[4,7,2,8,1,5,6,3]=>[6,4,1,2,7,8,3,5]=>0000000 [(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>[3,2,7,8,1,5,6,4]=>[6,3,2,1,7,8,4,5]=>0000000 [(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>[3,2,6,8,4,1,7,5]=>[7,3,2,6,1,4,8,5]=>0000000 [(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>[4,6,2,8,3,1,7,5]=>[7,4,6,2,1,3,8,5]=>0000000 [(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>[5,6,8,2,3,1,7,4]=>[7,5,6,1,2,3,8,4]=>0000000 [(1,5),(2,4),(3,7),(6,8)]=>[5,4,7,2,1,8,3,6]=>[6,5,8,3,2,1,7,4]=>[7,6,5,1,3,2,8,4]=>0000000 [(1,8),(2,4),(3,6),(5,7)]=>[8,4,6,2,7,3,5,1]=>[1,6,8,4,2,7,3,5]=>[2,6,8,5,1,3,7,4]=>0000000 [(1,5),(2,3),(4,7),(6,8)]=>[5,3,2,7,1,8,4,6]=>[6,4,3,8,2,1,7,5]=>[7,6,4,3,1,2,8,5]=>0000000 [(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>[4,5,2,3,8,1,7,6]=>[7,4,5,2,3,1,8,6]=>0000000 [(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>[3,2,5,4,8,1,7,6]=>[7,3,2,5,4,1,8,6]=>0000000 [(1,4),(2,3),(5,8),(6,7)]=>[4,3,2,1,8,7,6,5]=>[5,4,3,2,1,6,7,8]=>[6,5,4,3,2,7,8,1]=>0000000 [(1,5),(2,3),(4,8),(6,7)]=>[5,3,2,8,1,7,6,4]=>[6,4,3,1,5,2,7,8]=>[5,7,4,3,6,2,8,1]=>0000000 [(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,8,2,7,6,4]=>[4,6,2,1,5,3,7,8]=>[5,4,7,2,6,3,8,1]=>0000000 [(1,6),(2,5),(3,8),(4,7)]=>[6,5,8,7,2,1,4,3]=>[7,6,1,2,5,4,3,8]=>[4,5,8,7,6,3,2,1]=>0000000 [(1,8),(2,6),(3,7),(4,5)]=>[8,6,7,5,4,2,3,1]=>[1,8,2,3,4,7,5,6]=>[2,4,5,6,8,1,7,3]=>0000000 [(1,3),(2,7),(4,8),(5,6)]=>[3,7,1,8,6,5,2,4]=>[4,8,2,1,3,5,7,6]=>[5,4,6,2,7,1,8,3]=>0000000 [(1,8),(2,7),(3,6),(4,5)]=>[8,7,6,5,4,3,2,1]=>[1,2,3,4,5,6,7,8]=>[2,3,4,5,6,7,8,1]=>0000000
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
Lehmer code rotation
Description
Sends a permutation $\pi$ to the unique permutation $\tau$ (of the same length) such that every entry in the Lehmer code of $\tau$ is cyclically one larger than the Lehmer code of $\pi$.
Map
Kreweras complement
Description
Sends the permutation $\pi \in \mathfrak{S}_n$ to the permutation $\pi^{-1}c$ where $c = (1,\ldots,n)$ is the long cycle.
Map
connectivity set
Description
The connectivity set of a permutation as a binary word.
According to [2], also known as the global ascent set.
The connectivity set is
$$C(\pi)=\{i\in [n-1] | \forall 1 \leq j \leq i < k \leq n : \pi(j) < \pi(k)\}.$$
For $n > 1$ it can also be described as the set of occurrences of the mesh pattern
$$([1,2], \{(0,2),(1,0),(1,1),(2,0),(2,1) \})$$
or equivalently
$$([1,2], \{(0,1),(0,2),(1,1),(1,2),(2,0) \}),$$
see [3].
The permutation is connected, when the connectivity set is empty.