Identifier
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
Mp00073: Permutations major-index to inversion-number bijectionPermutations
Mp00114: Permutations connectivity setBinary words
Images
=>
Cc0012;cc-rep-0
[(1,2)]=>[2,1]=>[2,1]=>0 [(1,2),(3,4)]=>[2,1,4,3]=>[3,2,4,1]=>000 [(1,3),(2,4)]=>[3,4,1,2]=>[1,4,2,3]=>100 [(1,4),(2,3)]=>[3,4,2,1]=>[4,3,1,2]=>000 [(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[4,3,5,2,6,1]=>00000 [(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>[2,5,3,4,6,1]=>00000 [(1,4),(2,3),(5,6)]=>[3,4,2,1,6,5]=>[5,4,2,3,6,1]=>00000 [(1,5),(2,3),(4,6)]=>[3,5,2,6,1,4]=>[1,5,3,6,2,4]=>10000 [(1,6),(2,3),(4,5)]=>[3,5,2,6,4,1]=>[6,4,2,5,1,3]=>00000 [(1,6),(2,4),(3,5)]=>[4,5,6,2,3,1]=>[6,1,5,2,3,4]=>00000 [(1,5),(2,4),(3,6)]=>[4,5,6,2,1,3]=>[5,1,6,2,3,4]=>00000 [(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>[1,2,6,3,4,5]=>11000 [(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>[4,1,3,6,2,5]=>00000 [(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>[3,2,1,6,4,5]=>00100 [(1,2),(3,6),(4,5)]=>[2,1,5,6,4,3]=>[4,3,6,5,1,2]=>00000 [(1,3),(2,6),(4,5)]=>[3,5,1,6,4,2]=>[5,6,2,4,1,3]=>00000 [(1,4),(2,6),(3,5)]=>[4,5,6,1,3,2]=>[2,6,5,1,3,4]=>00000 [(1,5),(2,6),(3,4)]=>[4,5,6,3,1,2]=>[1,6,5,2,3,4]=>10000 [(1,6),(2,5),(3,4)]=>[4,5,6,3,2,1]=>[6,5,4,1,2,3]=>00000 [(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[5,4,6,3,7,2,8,1]=>0000000 [(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>[3,6,4,5,7,2,8,1]=>0000000 [(1,4),(2,3),(5,6),(7,8)]=>[3,4,2,1,6,5,8,7]=>[6,5,3,4,7,2,8,1]=>0000000 [(1,5),(2,3),(4,6),(7,8)]=>[3,5,2,6,1,4,8,7]=>[2,6,4,7,3,5,8,1]=>0000000 [(1,6),(2,3),(4,5),(7,8)]=>[3,5,2,6,4,1,8,7]=>[7,5,3,6,2,4,8,1]=>0000000 [(1,7),(2,3),(4,5),(6,8)]=>[3,5,2,7,4,8,1,6]=>[1,6,4,7,3,8,2,5]=>1000000 [(1,8),(2,3),(4,5),(6,7)]=>[3,5,2,7,4,8,6,1]=>[8,5,3,6,2,7,1,4]=>0000000 [(1,8),(2,4),(3,5),(6,7)]=>[4,5,7,2,3,8,6,1]=>[8,2,6,3,4,7,1,5]=>0000000 [(1,7),(2,4),(3,5),(6,8)]=>[4,5,7,2,3,8,1,6]=>[1,3,7,4,5,8,2,6]=>1000000 [(1,6),(2,4),(3,5),(7,8)]=>[4,5,6,2,3,1,8,7]=>[7,2,6,3,4,5,8,1]=>0000000 [(1,5),(2,4),(3,6),(7,8)]=>[4,5,6,2,1,3,8,7]=>[6,2,7,3,4,5,8,1]=>0000000 [(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>[2,3,7,4,5,6,8,1]=>0000000 [(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>[5,2,4,7,3,6,8,1]=>0000000 [(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>[4,3,2,7,5,6,8,1]=>0000000 [(1,2),(3,6),(4,5),(7,8)]=>[2,1,5,6,4,3,8,7]=>[5,4,7,6,2,3,8,1]=>0000000 [(1,3),(2,6),(4,5),(7,8)]=>[3,5,1,6,4,2,8,7]=>[6,7,3,5,2,4,8,1]=>0000000 [(1,4),(2,6),(3,5),(7,8)]=>[4,5,6,1,3,2,8,7]=>[3,7,6,2,4,5,8,1]=>0000000 [(1,5),(2,6),(3,4),(7,8)]=>[4,5,6,3,1,2,8,7]=>[2,7,6,3,4,5,8,1]=>0000000 [(1,6),(2,5),(3,4),(7,8)]=>[4,5,6,3,2,1,8,7]=>[7,6,5,2,3,4,8,1]=>0000000 [(1,7),(2,5),(3,4),(6,8)]=>[4,5,7,3,2,8,1,6]=>[1,7,6,3,4,8,2,5]=>1000000 [(1,8),(2,5),(3,4),(6,7)]=>[4,5,7,3,2,8,6,1]=>[8,6,5,2,3,7,1,4]=>0000000 [(1,8),(2,6),(3,4),(5,7)]=>[4,6,7,3,8,2,5,1]=>[8,1,6,3,7,2,4,5]=>0000000 [(1,7),(2,6),(3,4),(5,8)]=>[4,6,7,3,8,2,1,5]=>[7,1,6,3,8,2,4,5]=>0000000 [(1,6),(2,7),(3,4),(5,8)]=>[4,6,7,3,8,1,2,5]=>[1,2,7,4,8,3,5,6]=>1100000 [(1,5),(2,7),(3,4),(6,8)]=>[4,5,7,3,1,8,2,6]=>[6,1,7,3,4,8,2,5]=>0000000 [(1,4),(2,7),(3,5),(6,8)]=>[4,5,7,1,3,8,2,6]=>[2,1,7,4,5,8,3,6]=>0100000 [(1,3),(2,7),(4,5),(6,8)]=>[3,5,1,7,4,8,2,6]=>[5,1,4,7,3,8,2,6]=>0000000 [(1,2),(3,7),(4,5),(6,8)]=>[2,1,5,7,4,8,3,6]=>[4,3,1,7,5,8,2,6]=>0000000 [(1,2),(3,8),(4,5),(6,7)]=>[2,1,5,7,4,8,6,3]=>[5,4,8,6,2,7,1,3]=>0000000 [(1,3),(2,8),(4,5),(6,7)]=>[3,5,1,7,4,8,6,2]=>[6,8,3,5,2,7,1,4]=>0000000 [(1,4),(2,8),(3,5),(6,7)]=>[4,5,7,1,3,8,6,2]=>[3,8,6,2,4,7,1,5]=>0000000 [(1,5),(2,8),(3,4),(6,7)]=>[4,5,7,3,1,8,6,2]=>[7,8,5,2,3,6,1,4]=>0000000 [(1,6),(2,8),(3,4),(5,7)]=>[4,6,7,3,8,1,5,2]=>[2,8,6,3,7,1,4,5]=>0000000 [(1,7),(2,8),(3,4),(5,6)]=>[4,6,7,3,8,5,1,2]=>[1,8,6,3,7,2,4,5]=>1000000 [(1,8),(2,7),(3,4),(5,6)]=>[4,6,7,3,8,5,2,1]=>[8,7,5,2,6,1,3,4]=>0000000 [(1,8),(2,7),(3,5),(4,6)]=>[5,6,7,8,3,4,2,1]=>[8,7,1,6,2,3,4,5]=>0000000 [(1,7),(2,8),(3,5),(4,6)]=>[5,6,7,8,3,4,1,2]=>[1,8,2,7,3,4,5,6]=>1000000 [(1,6),(2,8),(3,5),(4,7)]=>[5,6,7,8,3,1,4,2]=>[7,8,1,6,2,3,4,5]=>0000000 [(1,5),(2,8),(3,6),(4,7)]=>[5,6,7,8,1,3,4,2]=>[2,8,1,7,3,4,5,6]=>0000000 [(1,4),(2,8),(3,6),(5,7)]=>[4,6,7,1,8,3,5,2]=>[6,8,1,3,7,2,4,5]=>0000000 [(1,3),(2,8),(4,6),(5,7)]=>[3,6,1,7,8,4,5,2]=>[5,8,2,1,7,3,4,6]=>0000000 [(1,2),(3,8),(4,6),(5,7)]=>[2,1,6,7,8,4,5,3]=>[4,3,8,1,7,2,5,6]=>0000000 [(1,2),(3,7),(4,6),(5,8)]=>[2,1,6,7,8,4,3,5]=>[4,3,7,1,8,2,5,6]=>0000000 [(1,3),(2,7),(4,6),(5,8)]=>[3,6,1,7,8,4,2,5]=>[5,7,2,1,8,3,4,6]=>0000000 [(1,4),(2,7),(3,6),(5,8)]=>[4,6,7,1,8,3,2,5]=>[6,7,1,3,8,2,4,5]=>0000000 [(1,5),(2,7),(3,6),(4,8)]=>[5,6,7,8,1,3,2,4]=>[2,7,1,8,3,4,5,6]=>0000000 [(1,6),(2,7),(3,5),(4,8)]=>[5,6,7,8,3,1,2,4]=>[1,7,2,8,3,4,5,6]=>1000000 [(1,7),(2,6),(3,5),(4,8)]=>[5,6,7,8,3,2,1,4]=>[7,6,1,8,2,3,4,5]=>0000000 [(1,8),(2,6),(3,5),(4,7)]=>[5,6,7,8,3,2,4,1]=>[8,6,1,7,2,3,4,5]=>0000000 [(1,8),(2,5),(3,6),(4,7)]=>[5,6,7,8,2,3,4,1]=>[8,1,2,7,3,4,5,6]=>0000000 [(1,7),(2,5),(3,6),(4,8)]=>[5,6,7,8,2,3,1,4]=>[7,1,2,8,3,4,5,6]=>0000000 [(1,6),(2,5),(3,7),(4,8)]=>[5,6,7,8,2,1,3,4]=>[6,1,2,8,3,4,5,7]=>0000000 [(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>[1,2,3,8,4,5,6,7]=>1110000 [(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>[5,1,2,4,8,3,6,7]=>0000000 [(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>[4,1,3,2,8,5,6,7]=>0001000 [(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>[3,2,1,4,8,5,6,7]=>0011000 [(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>[4,3,6,1,5,8,2,7]=>0000000 [(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>[5,6,2,1,4,8,3,7]=>0000000 [(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>[2,6,1,4,5,8,3,7]=>0000000 [(1,5),(2,4),(3,7),(6,8)]=>[4,5,7,2,1,8,3,6]=>[6,5,1,3,4,8,2,7]=>0000000 [(1,6),(2,4),(3,7),(5,8)]=>[4,6,7,2,8,1,3,5]=>[1,6,2,4,8,3,5,7]=>1000000 [(1,7),(2,4),(3,6),(5,8)]=>[4,6,7,2,8,3,1,5]=>[7,5,1,3,8,2,4,6]=>0000000 [(1,8),(2,4),(3,6),(5,7)]=>[4,6,7,2,8,3,5,1]=>[8,5,1,3,7,2,4,6]=>0000000 [(1,8),(2,3),(4,6),(5,7)]=>[3,6,2,7,8,4,5,1]=>[8,4,2,1,7,3,5,6]=>0000000 [(1,7),(2,3),(4,6),(5,8)]=>[3,6,2,7,8,4,1,5]=>[7,4,2,1,8,3,5,6]=>0000000 [(1,6),(2,3),(4,7),(5,8)]=>[3,6,2,7,8,1,4,5]=>[1,5,3,2,8,4,6,7]=>1000000 [(1,5),(2,3),(4,7),(6,8)]=>[3,5,2,7,1,8,4,6]=>[6,4,2,1,5,8,3,7]=>0000000 [(1,4),(2,3),(5,7),(6,8)]=>[3,4,2,1,7,8,5,6]=>[5,4,2,3,1,8,6,7]=>0000100 [(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>[2,5,3,4,1,8,6,7]=>0000100 [(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>[4,3,5,2,1,8,6,7]=>0000100 [(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,7,8,6,5]=>[5,4,6,3,8,7,1,2]=>0000000 [(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,7,8,6,5]=>[3,6,4,5,8,7,1,2]=>0000000 [(1,4),(2,3),(5,8),(6,7)]=>[3,4,2,1,7,8,6,5]=>[6,5,3,4,8,7,1,2]=>0000000 [(1,5),(2,3),(4,8),(6,7)]=>[3,5,2,7,1,8,6,4]=>[7,5,3,8,2,6,1,4]=>0000000 [(1,6),(2,3),(4,8),(5,7)]=>[3,6,2,7,8,1,5,4]=>[2,6,4,8,7,1,3,5]=>0000000 [(1,7),(2,3),(4,8),(5,6)]=>[3,6,2,7,8,5,1,4]=>[1,6,4,8,7,2,3,5]=>1000000 [(1,8),(2,3),(4,7),(5,6)]=>[3,6,2,7,8,5,4,1]=>[8,5,3,7,6,1,2,4]=>0000000 [(1,8),(2,4),(3,7),(5,6)]=>[4,6,7,2,8,5,3,1]=>[8,6,7,2,5,1,3,4]=>0000000 [(1,7),(2,4),(3,8),(5,6)]=>[4,6,7,2,8,5,1,3]=>[1,7,8,3,6,2,4,5]=>1000000 [(1,6),(2,4),(3,8),(5,7)]=>[4,6,7,2,8,1,5,3]=>[2,7,8,3,6,1,4,5]=>0000000 [(1,5),(2,4),(3,8),(6,7)]=>[4,5,7,2,1,8,6,3]=>[7,6,8,2,3,5,1,4]=>0000000 [(1,4),(2,5),(3,8),(6,7)]=>[4,5,7,1,2,8,6,3]=>[3,7,8,2,4,6,1,5]=>0000000 [(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,7,2,8,6,4]=>[6,7,3,8,2,5,1,4]=>0000000 [(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,7,3,8,6,4]=>[5,4,7,8,2,6,1,3]=>0000000 [(1,2),(3,6),(4,8),(5,7)]=>[2,1,6,7,8,3,5,4]=>[4,3,2,8,7,1,5,6]=>0000000 [(1,3),(2,6),(4,8),(5,7)]=>[3,6,1,7,8,2,5,4]=>[5,2,4,8,7,1,3,6]=>0000000 [(1,4),(2,6),(3,8),(5,7)]=>[4,6,7,1,8,2,5,3]=>[6,2,8,3,7,1,4,5]=>0000000 [(1,5),(2,6),(3,8),(4,7)]=>[5,6,7,8,1,2,4,3]=>[2,3,8,7,1,4,5,6]=>0000000 [(1,6),(2,5),(3,8),(4,7)]=>[5,6,7,8,2,1,4,3]=>[7,2,8,6,1,3,4,5]=>0000000 [(1,7),(2,5),(3,8),(4,6)]=>[5,6,7,8,2,4,1,3]=>[1,3,8,7,2,4,5,6]=>1000000 [(1,8),(2,5),(3,7),(4,6)]=>[5,6,7,8,2,4,3,1]=>[8,2,7,6,1,3,4,5]=>0000000 [(1,8),(2,6),(3,7),(4,5)]=>[5,6,7,8,4,2,3,1]=>[8,1,7,6,2,3,4,5]=>0000000 [(1,7),(2,6),(3,8),(4,5)]=>[5,6,7,8,4,2,1,3]=>[7,1,8,6,2,3,4,5]=>0000000 [(1,6),(2,7),(3,8),(4,5)]=>[5,6,7,8,4,1,2,3]=>[1,2,8,7,3,4,5,6]=>1100000 [(1,5),(2,7),(3,8),(4,6)]=>[5,6,7,8,1,4,2,3]=>[2,1,8,7,3,4,5,6]=>0100000 [(1,4),(2,7),(3,8),(5,6)]=>[4,6,7,1,8,5,2,3]=>[6,1,8,3,7,2,4,5]=>0000000 [(1,3),(2,7),(4,8),(5,6)]=>[3,6,1,7,8,5,2,4]=>[5,1,4,8,7,2,3,6]=>0000000 [(1,2),(3,7),(4,8),(5,6)]=>[2,1,6,7,8,5,3,4]=>[4,3,1,8,7,2,5,6]=>0000000 [(1,2),(3,8),(4,7),(5,6)]=>[2,1,6,7,8,5,4,3]=>[5,4,8,7,6,1,2,3]=>0000000 [(1,3),(2,8),(4,7),(5,6)]=>[3,6,1,7,8,5,4,2]=>[6,8,3,7,5,1,2,4]=>0000000 [(1,4),(2,8),(3,7),(5,6)]=>[4,6,7,1,8,5,3,2]=>[7,8,6,2,5,1,3,4]=>0000000 [(1,5),(2,8),(3,7),(4,6)]=>[5,6,7,8,1,4,3,2]=>[3,8,7,6,1,2,4,5]=>0000000 [(1,6),(2,8),(3,7),(4,5)]=>[5,6,7,8,4,1,3,2]=>[2,8,7,6,1,3,4,5]=>0000000 [(1,7),(2,8),(3,6),(4,5)]=>[5,6,7,8,4,3,1,2]=>[1,8,7,6,2,3,4,5]=>1000000 [(1,8),(2,7),(3,6),(4,5)]=>[5,6,7,8,4,3,2,1]=>[8,7,6,5,1,2,3,4]=>0000000
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
major-index to inversion-number bijection
Description
Return the permutation whose Lehmer code equals the major code of the preimage.
This map sends the major index to the number of inversions.
Map
connectivity set
Description
The connectivity set of a permutation as a binary word.
According to [2], also known as the global ascent set.
The connectivity set is
$$C(\pi)=\{i\in [n-1] | \forall 1 \leq j \leq i < k \leq n : \pi(j) < \pi(k)\}.$$
For $n > 1$ it can also be described as the set of occurrences of the mesh pattern
$$([1,2], \{(0,2),(1,0),(1,1),(2,0),(2,1) \})$$
or equivalently
$$([1,2], \{(0,1),(0,2),(1,1),(1,2),(2,0) \}),$$
see [3].
The permutation is connected, when the connectivity set is empty.