Identifier
Mp00058: Perfect matchings to permutationPermutations
Mp00239: Permutations CorteelPermutations
Mp00109: Permutations descent wordBinary words
Images
=>
Cc0012;cc-rep-0
[(1,2)]=>[2,1]=>[2,1]=>1 [(1,2),(3,4)]=>[2,1,4,3]=>[2,1,4,3]=>101 [(1,3),(2,4)]=>[3,4,1,2]=>[4,3,2,1]=>111 [(1,4),(2,3)]=>[4,3,2,1]=>[3,4,1,2]=>010 [(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[2,1,4,3,6,5]=>10101 [(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>[4,3,2,1,6,5]=>11101 [(1,4),(2,3),(5,6)]=>[4,3,2,1,6,5]=>[3,4,1,2,6,5]=>01001 [(1,5),(2,3),(4,6)]=>[5,3,2,6,1,4]=>[3,6,1,5,4,2]=>01011 [(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>[3,5,1,6,2,4]=>01010 [(1,6),(2,4),(3,5)]=>[6,4,5,2,3,1]=>[4,6,5,2,1,3]=>01110 [(1,5),(2,4),(3,6)]=>[5,4,6,2,1,3]=>[5,6,4,2,3,1]=>01101 [(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>[6,5,4,3,2,1]=>11111 [(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>[6,3,2,5,4,1]=>11011 [(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>[2,1,6,5,4,3]=>10111 [(1,2),(3,6),(4,5)]=>[2,1,6,5,4,3]=>[2,1,5,6,3,4]=>10010 [(1,3),(2,6),(4,5)]=>[3,6,1,5,4,2]=>[5,3,2,6,1,4]=>11010 [(1,4),(2,6),(3,5)]=>[4,6,5,1,3,2]=>[6,4,5,3,1,2]=>10110 [(1,5),(2,6),(3,4)]=>[5,6,4,3,1,2]=>[5,4,6,1,3,2]=>10101 [(1,6),(2,5),(3,4)]=>[6,5,4,3,2,1]=>[4,5,6,1,2,3]=>00100 [(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,1,4,3,6,5,8,7]=>1010101 [(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>[4,3,2,1,6,5,8,7]=>1110101 [(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>[3,4,1,2,6,5,8,7]=>0100101 [(1,5),(2,3),(4,6),(7,8)]=>[5,3,2,6,1,4,8,7]=>[3,6,1,5,4,2,8,7]=>0101101 [(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>[3,5,1,6,2,4,8,7]=>0101001 [(1,7),(2,3),(4,5),(6,8)]=>[7,3,2,5,4,8,1,6]=>[3,5,1,8,2,7,6,4]=>0101011 [(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,5,1,7,2,8,4,6]=>0101010 [(1,8),(2,4),(3,5),(6,7)]=>[8,4,5,2,3,7,6,1]=>[4,7,5,2,1,8,3,6]=>0111010 [(1,6),(2,4),(3,5),(7,8)]=>[6,4,5,2,3,1,8,7]=>[4,6,5,2,1,3,8,7]=>0111001 [(1,5),(2,4),(3,6),(7,8)]=>[5,4,6,2,1,3,8,7]=>[5,6,4,2,3,1,8,7]=>0110101 [(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>[6,5,4,3,2,1,8,7]=>1111101 [(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>[6,3,2,5,4,1,8,7]=>1101101 [(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>[2,1,6,5,4,3,8,7]=>1011101 [(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>[2,1,5,6,3,4,8,7]=>1001001 [(1,3),(2,6),(4,5),(7,8)]=>[3,6,1,5,4,2,8,7]=>[5,3,2,6,1,4,8,7]=>1101001 [(1,4),(2,6),(3,5),(7,8)]=>[4,6,5,1,3,2,8,7]=>[6,4,5,3,1,2,8,7]=>1011001 [(1,5),(2,6),(3,4),(7,8)]=>[5,6,4,3,1,2,8,7]=>[5,4,6,1,3,2,8,7]=>1010101 [(1,6),(2,5),(3,4),(7,8)]=>[6,5,4,3,2,1,8,7]=>[4,5,6,1,2,3,8,7]=>0010001 [(1,7),(2,5),(3,4),(6,8)]=>[7,5,4,3,2,8,1,6]=>[4,5,8,1,2,7,6,3]=>0010011 [(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>[4,5,7,1,2,8,3,6]=>0010010 [(1,8),(2,6),(3,4),(5,7)]=>[8,6,4,3,7,2,5,1]=>[4,6,8,1,7,3,2,5]=>0010110 [(1,7),(2,6),(3,4),(5,8)]=>[7,6,4,3,8,2,1,5]=>[4,7,8,1,6,3,5,2]=>0010101 [(1,6),(2,7),(3,4),(5,8)]=>[6,7,4,3,8,1,2,5]=>[7,4,8,1,6,5,3,2]=>1010111 [(1,3),(2,7),(4,5),(6,8)]=>[3,7,1,5,4,8,2,6]=>[5,3,2,8,1,7,6,4]=>1101011 [(1,2),(3,7),(4,5),(6,8)]=>[2,1,7,5,4,8,3,6]=>[2,1,5,8,3,7,6,4]=>1001011 [(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>[2,1,5,7,3,8,4,6]=>1001010 [(1,3),(2,8),(4,5),(6,7)]=>[3,8,1,5,4,7,6,2]=>[5,3,2,7,1,8,4,6]=>1101010 [(1,4),(2,8),(3,5),(6,7)]=>[4,8,5,1,3,7,6,2]=>[7,4,5,3,1,8,2,6]=>1011010 [(1,6),(2,8),(3,4),(5,7)]=>[6,8,4,3,7,1,5,2]=>[6,4,8,1,7,5,2,3]=>1010110 [(1,7),(2,8),(3,4),(5,6)]=>[7,8,4,3,6,5,1,2]=>[6,4,7,1,8,2,5,3]=>1010101 [(1,8),(2,7),(3,4),(5,6)]=>[8,7,4,3,6,5,2,1]=>[4,6,7,1,8,2,3,5]=>0010100 [(1,7),(2,8),(3,5),(4,6)]=>[7,8,5,6,3,4,1,2]=>[6,5,8,7,2,1,4,3]=>1011101 [(1,6),(2,8),(3,5),(4,7)]=>[6,8,5,7,3,1,4,2]=>[7,5,8,6,2,4,1,3]=>1011010 [(1,5),(2,8),(3,6),(4,7)]=>[5,8,6,7,1,3,4,2]=>[8,5,7,6,4,2,1,3]=>1011110 [(1,2),(3,8),(4,6),(5,7)]=>[2,1,8,6,7,4,5,3]=>[2,1,6,8,7,4,3,5]=>1001110 [(1,2),(3,7),(4,6),(5,8)]=>[2,1,7,6,8,4,3,5]=>[2,1,7,8,6,4,5,3]=>1001101 [(1,4),(2,7),(3,6),(5,8)]=>[4,7,6,1,8,3,2,5]=>[8,4,7,3,6,2,5,1]=>1010101 [(1,5),(2,7),(3,6),(4,8)]=>[5,7,6,8,1,3,2,4]=>[8,6,7,5,4,2,3,1]=>1011101 [(1,6),(2,7),(3,5),(4,8)]=>[6,7,5,8,3,1,2,4]=>[7,6,8,5,2,4,3,1]=>1011011 [(1,7),(2,6),(3,5),(4,8)]=>[7,6,5,8,3,2,1,4]=>[6,7,8,5,2,3,4,1]=>0011001 [(1,8),(2,6),(3,5),(4,7)]=>[8,6,5,7,3,2,4,1]=>[5,7,8,6,2,3,1,4]=>0011010 [(1,8),(2,5),(3,6),(4,7)]=>[8,5,6,7,2,3,4,1]=>[5,8,7,6,3,2,1,4]=>0111110 [(1,7),(2,5),(3,6),(4,8)]=>[7,5,6,8,2,3,1,4]=>[6,8,7,5,3,2,4,1]=>0111101 [(1,6),(2,5),(3,7),(4,8)]=>[6,5,7,8,2,1,3,4]=>[7,8,6,5,3,4,2,1]=>0111011 [(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>[8,7,6,5,4,3,2,1]=>1111111 [(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>[8,7,4,3,6,5,2,1]=>1110111 [(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>[8,3,2,7,6,5,4,1]=>1101111 [(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>[2,1,8,7,6,5,4,3]=>1011111 [(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>[2,1,8,5,4,7,6,3]=>1011011 [(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>[8,3,2,5,4,7,6,1]=>1101011 [(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>[8,5,4,3,2,7,6,1]=>1111011 [(1,6),(2,4),(3,7),(5,8)]=>[6,4,7,2,8,1,3,5]=>[7,8,4,2,6,5,3,1]=>0110111 [(1,8),(2,4),(3,6),(5,7)]=>[8,4,6,2,7,3,5,1]=>[4,8,6,2,7,3,1,5]=>0110110 [(1,8),(2,3),(4,6),(5,7)]=>[8,3,2,6,7,4,5,1]=>[3,6,1,8,7,4,2,5]=>0101110 [(1,6),(2,3),(4,7),(5,8)]=>[6,3,2,7,8,1,4,5]=>[3,8,1,7,6,5,4,2]=>0101111 [(1,5),(2,3),(4,7),(6,8)]=>[5,3,2,7,1,8,4,6]=>[3,8,1,5,4,7,6,2]=>0101011 [(1,4),(2,3),(5,7),(6,8)]=>[4,3,2,1,7,8,5,6]=>[3,4,1,2,8,7,6,5]=>0100111 [(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>[4,3,2,1,8,7,6,5]=>1110111 [(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>[2,1,4,3,8,7,6,5]=>1010111 [(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>[2,1,4,3,7,8,5,6]=>1010010 [(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,8,7,6,5]=>[4,3,2,1,7,8,5,6]=>1110010 [(1,4),(2,3),(5,8),(6,7)]=>[4,3,2,1,8,7,6,5]=>[3,4,1,2,7,8,5,6]=>0100010 [(1,5),(2,3),(4,8),(6,7)]=>[5,3,2,8,1,7,6,4]=>[3,7,1,5,4,8,2,6]=>0101010 [(1,8),(2,3),(4,7),(5,6)]=>[8,3,2,7,6,5,4,1]=>[3,6,1,7,8,2,4,5]=>0100100 [(1,8),(2,4),(3,7),(5,6)]=>[8,4,7,2,6,5,3,1]=>[4,7,6,2,8,1,3,5]=>0110100 [(1,7),(2,4),(3,8),(5,6)]=>[7,4,8,2,6,5,1,3]=>[6,7,4,2,8,1,5,3]=>0110101 [(1,6),(2,4),(3,8),(5,7)]=>[6,4,8,2,7,1,5,3]=>[6,8,4,2,7,5,1,3]=>0110110 [(1,5),(2,4),(3,8),(6,7)]=>[5,4,8,2,1,7,6,3]=>[5,7,4,2,3,8,1,6]=>0110010 [(1,4),(2,5),(3,8),(6,7)]=>[4,5,8,1,2,7,6,3]=>[7,5,4,3,2,8,1,6]=>1111010 [(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,8,2,7,6,4]=>[7,3,2,5,4,8,1,6]=>1101010 [(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,8,3,7,6,4]=>[2,1,7,5,4,8,3,6]=>1011010 [(1,2),(3,6),(4,8),(5,7)]=>[2,1,6,8,7,3,5,4]=>[2,1,8,6,7,5,3,4]=>1010110 [(1,4),(2,6),(3,8),(5,7)]=>[4,6,8,1,7,2,5,3]=>[8,6,4,3,7,5,1,2]=>1110110 [(1,5),(2,6),(3,8),(4,7)]=>[5,6,8,7,1,2,4,3]=>[8,7,5,6,4,3,1,2]=>1101110 [(1,6),(2,5),(3,8),(4,7)]=>[6,5,8,7,2,1,4,3]=>[7,8,5,6,3,4,1,2]=>0101010 [(1,7),(2,5),(3,8),(4,6)]=>[7,5,8,6,2,4,1,3]=>[6,8,5,7,3,1,4,2]=>0101101 [(1,8),(2,5),(3,7),(4,6)]=>[8,5,7,6,2,4,3,1]=>[5,8,6,7,3,1,2,4]=>0101100 [(1,8),(2,6),(3,7),(4,5)]=>[8,6,7,5,4,2,3,1]=>[5,7,6,8,1,3,2,4]=>0101010 [(1,7),(2,6),(3,8),(4,5)]=>[7,6,8,5,4,2,1,3]=>[6,7,5,8,1,3,4,2]=>0101001 [(1,6),(2,7),(3,8),(4,5)]=>[6,7,8,5,4,1,2,3]=>[7,6,5,8,1,4,3,2]=>1101011 [(1,5),(2,7),(3,8),(4,6)]=>[5,7,8,6,1,4,2,3]=>[8,6,5,7,4,1,3,2]=>1101101 [(1,4),(2,7),(3,8),(5,6)]=>[4,7,8,1,6,5,2,3]=>[7,6,4,3,8,1,5,2]=>1110101 [(1,2),(3,7),(4,8),(5,6)]=>[2,1,7,8,6,5,3,4]=>[2,1,7,6,8,3,5,4]=>1010101 [(1,2),(3,8),(4,7),(5,6)]=>[2,1,8,7,6,5,4,3]=>[2,1,6,7,8,3,4,5]=>1000100 [(1,3),(2,8),(4,7),(5,6)]=>[3,8,1,7,6,5,4,2]=>[6,3,2,7,8,1,4,5]=>1100100 [(1,5),(2,8),(3,7),(4,6)]=>[5,8,7,6,1,4,3,2]=>[8,5,6,7,4,1,2,3]=>1001100 [(1,6),(2,8),(3,7),(4,5)]=>[6,8,7,5,4,1,3,2]=>[7,5,6,8,1,4,2,3]=>1001010 [(1,8),(2,7),(3,6),(4,5)]=>[8,7,6,5,4,3,2,1]=>[5,6,7,8,1,2,3,4]=>0001000 [(1,2),(3,4),(5,6),(7,8),(9,10)]=>[2,1,4,3,6,5,8,7,10,9]=>[2,1,4,3,6,5,8,7,10,9]=>101010101 [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>10101010101
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
Corteel
Description
Corteel's map interchanging the number of crossings and the number of nestings of a permutation.
This involution creates a labelled bicoloured Motzkin path, using the Foata-Zeilberger map. In the corresponding bump diagram, each label records the number of arcs nesting the given arc. Then each label is replaced by its complement, and the inverse of the Foata-Zeilberger map is applied.
Map
descent word
Description
The descent positions of a permutation as a binary word.
For a permutation $\pi$ of $n$ letters and each $1\leq i\leq n-1$ such that $\pi(i) > \pi(i+1)$ we set $w_i=1$, otherwise $w_i=0$.
Thus, the length of the word is one less the size of the permutation. In particular, the descent word is undefined for the empty permutation.