Identifier
Mp00283:
Perfect matchings
—non-nesting-exceedence permutation⟶
Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
Images
=>
Cc0012;cc-rep-0
[(1,2)]=>[2,1]=>[2,1]=>1
[(1,2),(3,4)]=>[2,1,4,3]=>[2,1,4,3]=>101
[(1,3),(2,4)]=>[3,4,1,2]=>[4,1,3,2]=>101
[(1,4),(2,3)]=>[3,4,2,1]=>[4,2,3,1]=>101
[(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[2,1,4,3,6,5]=>10101
[(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>[4,1,3,2,6,5]=>10101
[(1,4),(2,3),(5,6)]=>[3,4,2,1,6,5]=>[4,2,3,1,6,5]=>10101
[(1,5),(2,3),(4,6)]=>[3,5,2,6,1,4]=>[6,2,3,1,5,4]=>10101
[(1,6),(2,3),(4,5)]=>[3,5,2,6,4,1]=>[6,4,5,2,3,1]=>10101
[(1,6),(2,4),(3,5)]=>[4,5,6,2,3,1]=>[6,2,5,3,4,1]=>10101
[(1,5),(2,4),(3,6)]=>[4,5,6,2,1,3]=>[6,2,5,1,4,3]=>10101
[(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>[6,1,5,2,4,3]=>10101
[(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>[6,1,3,2,5,4]=>10101
[(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>[2,1,6,3,5,4]=>10101
[(1,2),(3,6),(4,5)]=>[2,1,5,6,4,3]=>[2,1,6,4,5,3]=>10101
[(1,3),(2,6),(4,5)]=>[3,5,1,6,4,2]=>[6,4,5,1,3,2]=>10101
[(1,4),(2,6),(3,5)]=>[4,5,6,1,3,2]=>[6,1,5,3,4,2]=>10101
[(1,5),(2,6),(3,4)]=>[4,5,6,3,1,2]=>[6,3,5,1,4,2]=>10101
[(1,6),(2,5),(3,4)]=>[4,5,6,3,2,1]=>[6,3,5,2,4,1]=>10101
[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,1,4,3,6,5,8,7]=>1010101
[(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>[4,1,3,2,6,5,8,7]=>1010101
[(1,4),(2,3),(5,6),(7,8)]=>[3,4,2,1,6,5,8,7]=>[4,2,3,1,6,5,8,7]=>1010101
[(1,5),(2,3),(4,6),(7,8)]=>[3,5,2,6,1,4,8,7]=>[6,2,3,1,5,4,8,7]=>1010101
[(1,6),(2,3),(4,5),(7,8)]=>[3,5,2,6,4,1,8,7]=>[6,4,5,2,3,1,8,7]=>1010101
[(1,7),(2,3),(4,5),(6,8)]=>[3,5,2,7,4,8,1,6]=>[8,4,5,2,3,1,7,6]=>1010101
[(1,8),(2,3),(4,5),(6,7)]=>[3,5,2,7,4,8,6,1]=>[8,6,7,4,5,2,3,1]=>1010101
[(1,8),(2,4),(3,5),(6,7)]=>[4,5,7,2,3,8,6,1]=>[8,6,7,2,5,3,4,1]=>1010101
[(1,7),(2,4),(3,5),(6,8)]=>[4,5,7,2,3,8,1,6]=>[8,2,5,3,4,1,7,6]=>1010101
[(1,6),(2,4),(3,5),(7,8)]=>[4,5,6,2,3,1,8,7]=>[6,2,5,3,4,1,8,7]=>1010101
[(1,5),(2,4),(3,6),(7,8)]=>[4,5,6,2,1,3,8,7]=>[6,2,5,1,4,3,8,7]=>1010101
[(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>[6,1,5,2,4,3,8,7]=>1010101
[(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>[6,1,3,2,5,4,8,7]=>1010101
[(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>[2,1,6,3,5,4,8,7]=>1010101
[(1,2),(3,6),(4,5),(7,8)]=>[2,1,5,6,4,3,8,7]=>[2,1,6,4,5,3,8,7]=>1010101
[(1,3),(2,6),(4,5),(7,8)]=>[3,5,1,6,4,2,8,7]=>[6,4,5,1,3,2,8,7]=>1010101
[(1,4),(2,6),(3,5),(7,8)]=>[4,5,6,1,3,2,8,7]=>[6,1,5,3,4,2,8,7]=>1010101
[(1,5),(2,6),(3,4),(7,8)]=>[4,5,6,3,1,2,8,7]=>[6,3,5,1,4,2,8,7]=>1010101
[(1,6),(2,5),(3,4),(7,8)]=>[4,5,6,3,2,1,8,7]=>[6,3,5,2,4,1,8,7]=>1010101
[(1,7),(2,5),(3,4),(6,8)]=>[4,5,7,3,2,8,1,6]=>[8,3,5,2,4,1,7,6]=>1010101
[(1,8),(2,5),(3,4),(6,7)]=>[4,5,7,3,2,8,6,1]=>[8,6,7,3,5,2,4,1]=>1010101
[(1,8),(2,6),(3,4),(5,7)]=>[4,6,7,3,8,2,5,1]=>[8,3,7,5,6,2,4,1]=>1010101
[(1,7),(2,6),(3,4),(5,8)]=>[4,6,7,3,8,2,1,5]=>[8,3,7,2,4,1,6,5]=>1010101
[(1,6),(2,7),(3,4),(5,8)]=>[4,6,7,3,8,1,2,5]=>[8,3,7,1,4,2,6,5]=>1010101
[(1,5),(2,7),(3,4),(6,8)]=>[4,5,7,3,1,8,2,6]=>[8,3,5,1,4,2,7,6]=>1010101
[(1,4),(2,7),(3,5),(6,8)]=>[4,5,7,1,3,8,2,6]=>[8,1,5,3,4,2,7,6]=>1010101
[(1,3),(2,7),(4,5),(6,8)]=>[3,5,1,7,4,8,2,6]=>[8,4,5,1,3,2,7,6]=>1010101
[(1,2),(3,7),(4,5),(6,8)]=>[2,1,5,7,4,8,3,6]=>[2,1,8,4,5,3,7,6]=>1010101
[(1,2),(3,8),(4,5),(6,7)]=>[2,1,5,7,4,8,6,3]=>[2,1,8,6,7,4,5,3]=>1010101
[(1,3),(2,8),(4,5),(6,7)]=>[3,5,1,7,4,8,6,2]=>[8,6,7,4,5,1,3,2]=>1010101
[(1,4),(2,8),(3,5),(6,7)]=>[4,5,7,1,3,8,6,2]=>[8,6,7,1,5,3,4,2]=>1010101
[(1,5),(2,8),(3,4),(6,7)]=>[4,5,7,3,1,8,6,2]=>[8,6,7,3,5,1,4,2]=>1010101
[(1,6),(2,8),(3,4),(5,7)]=>[4,6,7,3,8,1,5,2]=>[8,3,7,5,6,1,4,2]=>1010101
[(1,7),(2,8),(3,4),(5,6)]=>[4,6,7,3,8,5,1,2]=>[8,5,7,3,6,1,4,2]=>1010101
[(1,8),(2,7),(3,4),(5,6)]=>[4,6,7,3,8,5,2,1]=>[8,5,7,3,6,2,4,1]=>1010101
[(1,8),(2,7),(3,5),(4,6)]=>[5,6,7,8,3,4,2,1]=>[8,3,7,4,6,2,5,1]=>1010101
[(1,7),(2,8),(3,5),(4,6)]=>[5,6,7,8,3,4,1,2]=>[8,3,7,4,6,1,5,2]=>1010101
[(1,6),(2,8),(3,5),(4,7)]=>[5,6,7,8,3,1,4,2]=>[8,3,7,1,6,4,5,2]=>1010101
[(1,5),(2,8),(3,6),(4,7)]=>[5,6,7,8,1,3,4,2]=>[8,1,7,3,6,4,5,2]=>1010101
[(1,4),(2,8),(3,6),(5,7)]=>[4,6,7,1,8,3,5,2]=>[8,1,7,5,6,3,4,2]=>1010101
[(1,3),(2,8),(4,6),(5,7)]=>[3,6,1,7,8,4,5,2]=>[8,4,7,5,6,1,3,2]=>1010101
[(1,2),(3,8),(4,6),(5,7)]=>[2,1,6,7,8,4,5,3]=>[2,1,8,4,7,5,6,3]=>1010101
[(1,2),(3,7),(4,6),(5,8)]=>[2,1,6,7,8,4,3,5]=>[2,1,8,4,7,3,6,5]=>1010101
[(1,3),(2,7),(4,6),(5,8)]=>[3,6,1,7,8,4,2,5]=>[8,4,7,1,3,2,6,5]=>1010101
[(1,4),(2,7),(3,6),(5,8)]=>[4,6,7,1,8,3,2,5]=>[8,1,7,3,4,2,6,5]=>1010101
[(1,5),(2,7),(3,6),(4,8)]=>[5,6,7,8,1,3,2,4]=>[8,1,7,3,6,2,5,4]=>1010101
[(1,6),(2,7),(3,5),(4,8)]=>[5,6,7,8,3,1,2,4]=>[8,3,7,1,6,2,5,4]=>1010101
[(1,7),(2,6),(3,5),(4,8)]=>[5,6,7,8,3,2,1,4]=>[8,3,7,2,6,1,5,4]=>1010101
[(1,8),(2,6),(3,5),(4,7)]=>[5,6,7,8,3,2,4,1]=>[8,3,7,2,6,4,5,1]=>1010101
[(1,8),(2,5),(3,6),(4,7)]=>[5,6,7,8,2,3,4,1]=>[8,2,7,3,6,4,5,1]=>1010101
[(1,7),(2,5),(3,6),(4,8)]=>[5,6,7,8,2,3,1,4]=>[8,2,7,3,6,1,5,4]=>1010101
[(1,6),(2,5),(3,7),(4,8)]=>[5,6,7,8,2,1,3,4]=>[8,2,7,1,6,3,5,4]=>1010101
[(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>[8,1,7,2,6,3,5,4]=>1010101
[(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>[8,1,7,2,4,3,6,5]=>1010101
[(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>[8,1,3,2,7,4,6,5]=>1010101
[(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>[2,1,8,3,7,4,6,5]=>1010101
[(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>[2,1,8,3,5,4,7,6]=>1010101
[(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>[8,1,3,2,5,4,7,6]=>1010101
[(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>[8,1,5,2,4,3,7,6]=>1010101
[(1,5),(2,4),(3,7),(6,8)]=>[4,5,7,2,1,8,3,6]=>[8,2,5,1,4,3,7,6]=>1010101
[(1,6),(2,4),(3,7),(5,8)]=>[4,6,7,2,8,1,3,5]=>[8,2,7,1,4,3,6,5]=>1010101
[(1,7),(2,4),(3,6),(5,8)]=>[4,6,7,2,8,3,1,5]=>[8,2,7,3,4,1,6,5]=>1010101
[(1,8),(2,4),(3,6),(5,7)]=>[4,6,7,2,8,3,5,1]=>[8,2,7,5,6,3,4,1]=>1010101
[(1,8),(2,3),(4,6),(5,7)]=>[3,6,2,7,8,4,5,1]=>[8,4,7,5,6,2,3,1]=>1010101
[(1,7),(2,3),(4,6),(5,8)]=>[3,6,2,7,8,4,1,5]=>[8,4,7,2,3,1,6,5]=>1010101
[(1,6),(2,3),(4,7),(5,8)]=>[3,6,2,7,8,1,4,5]=>[8,2,3,1,7,4,6,5]=>1010101
[(1,5),(2,3),(4,7),(6,8)]=>[3,5,2,7,1,8,4,6]=>[8,2,3,1,5,4,7,6]=>1010101
[(1,4),(2,3),(5,7),(6,8)]=>[3,4,2,1,7,8,5,6]=>[4,2,3,1,8,5,7,6]=>1010101
[(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>[4,1,3,2,8,5,7,6]=>1010101
[(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>[2,1,4,3,8,5,7,6]=>1010101
[(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,7,8,6,5]=>[2,1,4,3,8,6,7,5]=>1010101
[(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,7,8,6,5]=>[4,1,3,2,8,6,7,5]=>1010101
[(1,4),(2,3),(5,8),(6,7)]=>[3,4,2,1,7,8,6,5]=>[4,2,3,1,8,6,7,5]=>1010101
[(1,5),(2,3),(4,8),(6,7)]=>[3,5,2,7,1,8,6,4]=>[8,6,7,2,3,1,5,4]=>1010101
[(1,6),(2,3),(4,8),(5,7)]=>[3,6,2,7,8,1,5,4]=>[8,2,3,1,7,5,6,4]=>1010101
[(1,7),(2,3),(4,8),(5,6)]=>[3,6,2,7,8,5,1,4]=>[8,5,7,2,3,1,6,4]=>1010101
[(1,8),(2,3),(4,7),(5,6)]=>[3,6,2,7,8,5,4,1]=>[8,5,7,4,6,2,3,1]=>1010101
[(1,8),(2,4),(3,7),(5,6)]=>[4,6,7,2,8,5,3,1]=>[8,5,7,2,6,3,4,1]=>1010101
[(1,7),(2,4),(3,8),(5,6)]=>[4,6,7,2,8,5,1,3]=>[8,5,7,2,6,1,4,3]=>1010101
[(1,6),(2,4),(3,8),(5,7)]=>[4,6,7,2,8,1,5,3]=>[8,2,7,5,6,1,4,3]=>1010101
[(1,5),(2,4),(3,8),(6,7)]=>[4,5,7,2,1,8,6,3]=>[8,6,7,2,5,1,4,3]=>1010101
[(1,4),(2,5),(3,8),(6,7)]=>[4,5,7,1,2,8,6,3]=>[8,6,7,1,5,2,4,3]=>1010101
[(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,7,2,8,6,4]=>[8,6,7,1,3,2,5,4]=>1010101
[(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,7,3,8,6,4]=>[2,1,8,6,7,3,5,4]=>1010101
[(1,2),(3,6),(4,8),(5,7)]=>[2,1,6,7,8,3,5,4]=>[2,1,8,3,7,5,6,4]=>1010101
[(1,3),(2,6),(4,8),(5,7)]=>[3,6,1,7,8,2,5,4]=>[8,1,3,2,7,5,6,4]=>1010101
[(1,4),(2,6),(3,8),(5,7)]=>[4,6,7,1,8,2,5,3]=>[8,1,7,5,6,2,4,3]=>1010101
[(1,5),(2,6),(3,8),(4,7)]=>[5,6,7,8,1,2,4,3]=>[8,1,7,2,6,4,5,3]=>1010101
[(1,6),(2,5),(3,8),(4,7)]=>[5,6,7,8,2,1,4,3]=>[8,2,7,1,6,4,5,3]=>1010101
[(1,7),(2,5),(3,8),(4,6)]=>[5,6,7,8,2,4,1,3]=>[8,2,7,4,6,1,5,3]=>1010101
[(1,8),(2,5),(3,7),(4,6)]=>[5,6,7,8,2,4,3,1]=>[8,2,7,4,6,3,5,1]=>1010101
[(1,8),(2,6),(3,7),(4,5)]=>[5,6,7,8,4,2,3,1]=>[8,4,7,2,6,3,5,1]=>1010101
[(1,7),(2,6),(3,8),(4,5)]=>[5,6,7,8,4,2,1,3]=>[8,4,7,2,6,1,5,3]=>1010101
[(1,6),(2,7),(3,8),(4,5)]=>[5,6,7,8,4,1,2,3]=>[8,4,7,1,6,2,5,3]=>1010101
[(1,5),(2,7),(3,8),(4,6)]=>[5,6,7,8,1,4,2,3]=>[8,1,7,4,6,2,5,3]=>1010101
[(1,4),(2,7),(3,8),(5,6)]=>[4,6,7,1,8,5,2,3]=>[8,5,7,1,6,2,4,3]=>1010101
[(1,3),(2,7),(4,8),(5,6)]=>[3,6,1,7,8,5,2,4]=>[8,5,7,1,3,2,6,4]=>1010101
[(1,2),(3,7),(4,8),(5,6)]=>[2,1,6,7,8,5,3,4]=>[2,1,8,5,7,3,6,4]=>1010101
[(1,2),(3,8),(4,7),(5,6)]=>[2,1,6,7,8,5,4,3]=>[2,1,8,5,7,4,6,3]=>1010101
[(1,3),(2,8),(4,7),(5,6)]=>[3,6,1,7,8,5,4,2]=>[8,5,7,4,6,1,3,2]=>1010101
[(1,4),(2,8),(3,7),(5,6)]=>[4,6,7,1,8,5,3,2]=>[8,5,7,1,6,3,4,2]=>1010101
[(1,5),(2,8),(3,7),(4,6)]=>[5,6,7,8,1,4,3,2]=>[8,1,7,4,6,3,5,2]=>1010101
[(1,6),(2,8),(3,7),(4,5)]=>[5,6,7,8,4,1,3,2]=>[8,4,7,1,6,3,5,2]=>1010101
[(1,7),(2,8),(3,6),(4,5)]=>[5,6,7,8,4,3,1,2]=>[8,4,7,3,6,1,5,2]=>1010101
[(1,8),(2,7),(3,6),(4,5)]=>[5,6,7,8,4,3,2,1]=>[8,4,7,3,6,2,5,1]=>1010101
[(1,2),(3,4),(5,6),(7,8),(9,10)]=>[2,1,4,3,6,5,8,7,10,9]=>[2,1,4,3,6,5,8,7,10,9]=>101010101
[(1,3),(2,4),(5,6),(7,8),(9,10)]=>[3,4,1,2,6,5,8,7,10,9]=>[4,1,3,2,6,5,8,7,10,9]=>101010101
[(1,10),(2,3),(4,5),(6,7),(8,9)]=>[3,5,2,7,4,9,6,10,8,1]=>[10,8,9,6,7,4,5,2,3,1]=>101010101
[(1,2),(3,5),(4,6),(7,8),(9,10)]=>[2,1,5,6,3,4,8,7,10,9]=>[2,1,6,3,5,4,8,7,10,9]=>101010101
[(1,3),(2,4),(5,7),(6,8),(9,10)]=>[3,4,1,2,7,8,5,6,10,9]=>[4,1,3,2,8,5,7,6,10,9]=>101010101
[(1,2),(3,4),(5,7),(6,8),(9,10)]=>[2,1,4,3,7,8,5,6,10,9]=>[2,1,4,3,8,5,7,6,10,9]=>101010101
[(1,6),(2,7),(3,8),(4,9),(5,10)]=>[6,7,8,9,10,1,2,3,4,5]=>[10,1,9,2,8,3,7,4,6,5]=>101010101
[(1,3),(2,5),(4,7),(6,9),(8,10)]=>[3,5,1,7,2,9,4,10,6,8]=>[10,1,3,2,5,4,7,6,9,8]=>101010101
[(1,2),(3,5),(4,6),(7,9),(8,10)]=>[2,1,5,6,3,4,9,10,7,8]=>[2,1,6,3,5,4,10,7,9,8]=>101010101
[(1,3),(2,4),(5,6),(7,9),(8,10)]=>[3,4,1,2,6,5,9,10,7,8]=>[4,1,3,2,6,5,10,7,9,8]=>101010101
[(1,2),(3,4),(5,6),(7,9),(8,10)]=>[2,1,4,3,6,5,9,10,7,8]=>[2,1,4,3,6,5,10,7,9,8]=>101010101
[(1,10),(2,9),(3,8),(4,7),(5,6)]=>[6,7,8,9,10,5,4,3,2,1]=>[10,5,9,4,8,3,7,2,6,1]=>101010101
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>10101010101
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)]=>[2,1,4,3,6,5,8,7,11,12,9,10]=>[2,1,4,3,6,5,8,7,12,9,11,10]=>10101010101
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)]=>[2,1,4,3,6,5,9,10,7,8,12,11]=>[2,1,4,3,6,5,10,7,9,8,12,11]=>10101010101
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)]=>[2,1,4,3,7,8,5,6,10,9,12,11]=>[2,1,4,3,8,5,7,6,10,9,12,11]=>10101010101
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)]=>[2,1,4,3,7,8,5,6,11,12,9,10]=>[2,1,4,3,8,5,7,6,12,9,11,10]=>10101010101
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)]=>[2,1,5,6,3,4,8,7,10,9,12,11]=>[2,1,6,3,5,4,8,7,10,9,12,11]=>10101010101
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)]=>[2,1,5,6,3,4,8,7,11,12,9,10]=>[2,1,6,3,5,4,8,7,12,9,11,10]=>10101010101
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)]=>[2,1,5,6,3,4,9,10,7,8,12,11]=>[2,1,6,3,5,4,10,7,9,8,12,11]=>10101010101
[(1,3),(2,4),(5,6),(7,8),(9,10),(11,12)]=>[3,4,1,2,6,5,8,7,10,9,12,11]=>[4,1,3,2,6,5,8,7,10,9,12,11]=>10101010101
[(1,3),(2,4),(5,6),(7,8),(9,11),(10,12)]=>[3,4,1,2,6,5,8,7,11,12,9,10]=>[4,1,3,2,6,5,8,7,12,9,11,10]=>10101010101
[(1,3),(2,4),(5,6),(7,9),(8,10),(11,12)]=>[3,4,1,2,6,5,9,10,7,8,12,11]=>[4,1,3,2,6,5,10,7,9,8,12,11]=>10101010101
[(1,3),(2,4),(5,7),(6,8),(9,10),(11,12)]=>[3,4,1,2,7,8,5,6,10,9,12,11]=>[4,1,3,2,8,5,7,6,10,9,12,11]=>10101010101
[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12)]=>[3,4,1,2,7,8,5,6,11,12,9,10]=>[4,1,3,2,8,5,7,6,12,9,11,10]=>10101010101
[(1,3),(2,5),(4,7),(6,9),(8,11),(10,12)]=>[3,5,1,7,2,9,4,11,6,12,8,10]=>[12,1,3,2,5,4,7,6,9,8,11,10]=>10101010101
Map
non-nesting-exceedence permutation
Description
The fixed-point-free permutation with deficiencies given by the perfect matching, no alignments and no inversions between exceedences.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Put differently, the exceedences form the unique non-nesting perfect matching whose openers coincide with those of the given perfect matching.
Map
Clarke-Steingrimsson-Zeng inverse
Description
The inverse of the Clarke-Steingrimsson-Zeng map, sending excedances to descents.
This is the inverse of the map $\Phi$ in [1, sec.3].
This is the inverse of the map $\Phi$ in [1, sec.3].
Map
descent word
Description
The descent positions of a permutation as a binary word.
For a permutation $\pi$ of $n$ letters and each $1\leq i\leq n-1$ such that $\pi(i) > \pi(i+1)$ we set $w_i=1$, otherwise $w_i=0$.
Thus, the length of the word is one less the size of the permutation. In particular, the descent word is undefined for the empty permutation.
For a permutation $\pi$ of $n$ letters and each $1\leq i\leq n-1$ such that $\pi(i) > \pi(i+1)$ we set $w_i=1$, otherwise $w_i=0$.
Thus, the length of the word is one less the size of the permutation. In particular, the descent word is undefined for the empty permutation.
searching the database
Sorry, this map was not found in the database.