Identifier
Mp00058: Perfect matchings to permutationPermutations
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
Mp00109: Permutations descent wordBinary words
Images
=>
Cc0012;cc-rep-0
[(1,2)]=>[2,1]=>[2,1]=>1 [(1,2),(3,4)]=>[2,1,4,3]=>[2,1,4,3]=>101 [(1,3),(2,4)]=>[3,4,1,2]=>[4,1,3,2]=>101 [(1,4),(2,3)]=>[4,3,2,1]=>[2,3,4,1]=>001 [(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[2,1,4,3,6,5]=>10101 [(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>[4,1,3,2,6,5]=>10101 [(1,4),(2,3),(5,6)]=>[4,3,2,1,6,5]=>[2,3,4,1,6,5]=>00101 [(1,5),(2,3),(4,6)]=>[5,3,2,6,1,4]=>[6,3,5,1,2,4]=>10100 [(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>[4,3,5,6,1,2]=>10010 [(1,6),(2,4),(3,5)]=>[6,4,5,2,3,1]=>[3,5,2,6,4,1]=>01011 [(1,5),(2,4),(3,6)]=>[5,4,6,2,1,3]=>[2,6,1,5,4,3]=>01011 [(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>[6,1,2,4,5,3]=>10001 [(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>[5,6,3,2,1,4]=>01110 [(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>[2,1,6,3,5,4]=>10101 [(1,2),(3,6),(4,5)]=>[2,1,6,5,4,3]=>[2,1,4,5,6,3]=>10001 [(1,3),(2,6),(4,5)]=>[3,6,1,5,4,2]=>[6,4,3,5,1,2]=>11010 [(1,4),(2,6),(3,5)]=>[4,6,5,1,3,2]=>[5,3,1,4,6,2]=>11001 [(1,5),(2,6),(3,4)]=>[5,6,4,3,1,2]=>[3,1,4,6,5,2]=>10011 [(1,6),(2,5),(3,4)]=>[6,5,4,3,2,1]=>[2,3,4,5,6,1]=>00001 [(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,1,4,3,6,5,8,7]=>1010101 [(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>[4,1,3,2,6,5,8,7]=>1010101 [(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>[2,3,4,1,6,5,8,7]=>0010101 [(1,5),(2,3),(4,6),(7,8)]=>[5,3,2,6,1,4,8,7]=>[6,3,5,1,2,4,8,7]=>1010001 [(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>[4,3,5,6,1,2,8,7]=>1001001 [(1,7),(2,3),(4,5),(6,8)]=>[7,3,2,5,4,8,1,6]=>[8,3,7,5,2,1,4,6]=>1011100 [(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[6,3,7,5,1,8,4,2]=>1011011 [(1,8),(2,4),(3,5),(6,7)]=>[8,4,5,2,3,7,6,1]=>[6,5,2,7,1,8,3,4]=>1101010 [(1,6),(2,4),(3,5),(7,8)]=>[6,4,5,2,3,1,8,7]=>[3,5,2,6,4,1,8,7]=>0101101 [(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>[6,1,2,4,5,3,8,7]=>1000101 [(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>[5,6,3,2,1,4,8,7]=>0111001 [(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>[2,1,6,3,5,4,8,7]=>1010101 [(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>[2,1,4,5,6,3,8,7]=>1000101 [(1,3),(2,6),(4,5),(7,8)]=>[3,6,1,5,4,2,8,7]=>[6,4,3,5,1,2,8,7]=>1101001 [(1,4),(2,6),(3,5),(7,8)]=>[4,6,5,1,3,2,8,7]=>[5,3,1,4,6,2,8,7]=>1100101 [(1,6),(2,5),(3,4),(7,8)]=>[6,5,4,3,2,1,8,7]=>[2,3,4,5,6,1,8,7]=>0000101 [(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>[6,3,4,5,7,8,1,2]=>1000010 [(1,8),(2,6),(3,4),(5,7)]=>[8,6,4,3,7,2,5,1]=>[5,7,4,6,2,8,3,1]=>0101011 [(1,7),(2,6),(3,4),(5,8)]=>[7,6,4,3,8,2,1,5]=>[2,8,4,6,1,7,3,5]=>0101010 [(1,5),(2,7),(3,4),(6,8)]=>[5,7,4,3,1,8,2,6]=>[3,4,7,8,5,2,1,6]=>0001110 [(1,3),(2,7),(4,5),(6,8)]=>[3,7,1,5,4,8,2,6]=>[7,8,3,5,1,2,4,6]=>0101000 [(1,2),(3,7),(4,5),(6,8)]=>[2,1,7,5,4,8,3,6]=>[2,1,8,5,7,3,4,6]=>1010100 [(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>[2,1,6,5,7,8,3,4]=>1010010 [(1,3),(2,8),(4,5),(6,7)]=>[3,8,1,5,4,7,6,2]=>[8,6,3,5,1,7,4,2]=>1101011 [(1,5),(2,8),(3,4),(6,7)]=>[5,8,4,3,1,7,6,2]=>[3,4,8,6,5,7,1,2]=>0011010 [(1,7),(2,8),(3,4),(5,6)]=>[7,8,4,3,6,5,1,2]=>[5,1,4,6,8,2,7,3]=>1000101 [(1,8),(2,7),(3,4),(5,6)]=>[8,7,4,3,6,5,2,1]=>[2,5,4,6,7,1,8,3]=>0100101 [(1,8),(2,7),(3,5),(4,6)]=>[8,7,5,6,3,4,2,1]=>[2,4,6,3,7,5,8,1]=>0010101 [(1,7),(2,8),(3,5),(4,6)]=>[7,8,5,6,3,4,1,2]=>[4,1,6,3,8,5,7,2]=>1010101 [(1,6),(2,8),(3,5),(4,7)]=>[6,8,5,7,3,1,4,2]=>[3,7,4,2,8,6,5,1]=>0110111 [(1,3),(2,8),(4,6),(5,7)]=>[3,8,1,6,7,4,5,2]=>[8,5,3,7,4,1,6,2]=>1101101 [(1,2),(3,8),(4,6),(5,7)]=>[2,1,8,6,7,4,5,3]=>[2,1,5,7,4,8,6,3]=>1001011 [(1,6),(2,7),(3,5),(4,8)]=>[6,7,5,8,3,1,2,4]=>[3,1,8,2,7,6,5,4]=>1010111 [(1,7),(2,6),(3,5),(4,8)]=>[7,6,5,8,3,2,1,4]=>[2,3,8,1,6,7,5,4]=>0010011 [(1,8),(2,6),(3,5),(4,7)]=>[8,6,5,7,3,2,4,1]=>[4,3,7,2,6,8,5,1]=>1010011 [(1,6),(2,5),(3,7),(4,8)]=>[6,5,7,8,2,1,3,4]=>[2,8,1,3,6,5,7,4]=>0100101 [(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>[8,1,2,3,5,6,7,4]=>1000001 [(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>[7,8,2,4,3,6,1,5]=>0101010 [(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>[6,8,3,2,4,1,7,5]=>0110101 [(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>[2,1,8,3,4,6,7,5]=>1010001 [(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>[2,1,7,8,5,4,3,6]=>1001110 [(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>[5,7,3,8,1,4,2,6]=>0101010 [(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>[7,1,8,4,5,3,2,6]=>1010110 [(1,6),(2,4),(3,7),(5,8)]=>[6,4,7,2,8,1,3,5]=>[8,7,1,6,3,4,2,5]=>1101010 [(1,8),(2,4),(3,6),(5,7)]=>[8,4,6,2,7,3,5,1]=>[5,6,7,8,3,4,2,1]=>0001011 [(1,8),(2,3),(4,6),(5,7)]=>[8,3,2,6,7,4,5,1]=>[5,3,8,7,4,2,6,1]=>1011101 [(1,6),(2,3),(4,7),(5,8)]=>[6,3,2,7,8,1,4,5]=>[8,3,6,1,4,2,7,5]=>1010101 [(1,5),(2,3),(4,7),(6,8)]=>[5,3,2,7,1,8,4,6]=>[7,3,5,8,2,4,1,6]=>1001010 [(1,4),(2,3),(5,7),(6,8)]=>[4,3,2,1,7,8,5,6]=>[2,3,4,1,8,5,7,6]=>0010101 [(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>[4,1,3,2,8,5,7,6]=>1010101 [(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>[2,1,4,3,8,5,7,6]=>1010101 [(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>[2,1,4,3,6,7,8,5]=>1010001 [(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,8,7,6,5]=>[4,1,3,2,6,7,8,5]=>1010001 [(1,4),(2,3),(5,8),(6,7)]=>[4,3,2,1,8,7,6,5]=>[2,3,4,1,6,7,8,5]=>0010001 [(1,5),(2,3),(4,8),(6,7)]=>[5,3,2,8,1,7,6,4]=>[8,3,5,6,2,7,1,4]=>1001010 [(1,7),(2,3),(4,8),(5,6)]=>[7,3,2,8,6,5,1,4]=>[5,3,6,1,8,7,2,4]=>1010110 [(1,8),(2,3),(4,7),(5,6)]=>[8,3,2,7,6,5,4,1]=>[4,3,5,6,7,8,1,2]=>1000010 [(1,8),(2,4),(3,7),(5,6)]=>[8,4,7,2,6,5,3,1]=>[3,5,6,7,8,4,2,1]=>0000111 [(1,7),(2,4),(3,8),(5,6)]=>[7,4,8,2,6,5,1,3]=>[5,6,2,8,7,4,1,3]=>0101110 [(1,6),(2,4),(3,8),(5,7)]=>[6,4,8,2,7,1,5,3]=>[7,8,5,6,1,4,2,3]=>0101010 [(1,4),(2,5),(3,8),(6,7)]=>[4,5,8,1,2,7,6,3]=>[8,1,6,4,5,7,2,3]=>1010010 [(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,8,2,7,6,4]=>[5,8,3,6,1,7,2,4]=>0101010 [(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,8,3,7,6,4]=>[2,1,8,6,5,7,3,4]=>1011010 [(1,2),(3,6),(4,8),(5,7)]=>[2,1,6,8,7,3,5,4]=>[2,1,7,5,3,6,8,4]=>1011001 [(1,4),(2,6),(3,8),(5,7)]=>[4,6,8,1,7,2,5,3]=>[8,7,5,4,2,6,1,3]=>1111010 [(1,5),(2,6),(3,8),(4,7)]=>[5,6,8,7,1,2,4,3]=>[7,1,4,2,5,6,8,3]=>1010001 [(1,6),(2,5),(3,8),(4,7)]=>[6,5,8,7,2,1,4,3]=>[2,7,4,1,6,5,8,3]=>0110101 [(1,8),(2,5),(3,7),(4,6)]=>[8,5,7,6,2,4,3,1]=>[3,4,6,1,7,8,2,5]=>0010010 [(1,2),(3,8),(4,7),(5,6)]=>[2,1,8,7,6,5,4,3]=>[2,1,4,5,6,7,8,3]=>1000001 [(1,3),(2,8),(4,7),(5,6)]=>[3,8,1,7,6,5,4,2]=>[8,4,3,5,6,7,1,2]=>1100010 [(1,4),(2,8),(3,7),(5,6)]=>[4,8,7,1,6,5,3,2]=>[7,3,5,4,6,1,8,2]=>1010101 [(1,5),(2,8),(3,7),(4,6)]=>[5,8,7,6,1,4,3,2]=>[6,3,4,1,5,7,8,2]=>1010001 [(1,7),(2,8),(3,6),(4,5)]=>[7,8,6,5,4,3,1,2]=>[3,1,4,5,6,8,7,2]=>1000011 [(1,8),(2,7),(3,6),(4,5)]=>[8,7,6,5,4,3,2,1]=>[2,3,4,5,6,7,8,1]=>0000001 [(1,2),(3,4),(5,6),(7,8),(9,10)]=>[2,1,4,3,6,5,8,7,10,9]=>[2,1,4,3,6,5,8,7,10,9]=>101010101 [(1,6),(2,4),(3,5),(7,8),(9,10)]=>[6,4,5,2,3,1,8,7,10,9]=>[3,5,2,6,4,1,8,7,10,9]=>010110101 [(1,2),(3,8),(4,6),(5,7),(9,10)]=>[2,1,8,6,7,4,5,3,10,9]=>[2,1,5,7,4,8,6,3,10,9]=>100101101 [(1,10),(2,8),(3,9),(4,6),(5,7)]=>[10,8,9,6,7,4,5,2,3,1]=>[3,5,2,7,4,9,6,10,8,1]=>010101011 [(1,2),(3,4),(5,10),(6,8),(7,9)]=>[2,1,4,3,10,8,9,6,7,5]=>[2,1,4,3,7,9,6,10,8,5]=>101001011 [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>10101010101
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
descent views to invisible inversion bottoms
Description
Return a permutation whose multiset of invisible inversion bottoms is the multiset of descent views of the given permutation.
An invisible inversion of a permutation $\sigma$ is a pair $i < j$ such that $i < \sigma(j) < \sigma(i)$. The element $\sigma(j)$ is then an invisible inversion bottom.
A descent view in a permutation $\pi$ is an element $\pi(j)$ such that $\pi(i+1) < \pi(j) < \pi(i)$, and additionally the smallest element in the decreasing run containing $\pi(i)$ is smaller than the smallest element in the decreasing run containing $\pi(j)$.
This map is a bijection $\chi:\mathfrak S_n \to \mathfrak S_n$, such that
  • the multiset of descent views in $\pi$ is the multiset of invisible inversion bottoms in $\chi(\pi)$,
  • the set of left-to-right maximima of $\pi$ is the set of maximal elements in the cycles of $\chi(\pi)$,
  • the set of global ascent of $\pi$ is the set of global ascent of $\chi(\pi)$,
  • the set of maximal elements in the decreasing runs of $\pi$ is the set of deficiency positions of $\chi(\pi)$, and
  • the set of minimal elements in the decreasing runs of $\pi$ is the set of deficiency values of $\chi(\pi)$.
Map
descent word
Description
The descent positions of a permutation as a binary word.
For a permutation $\pi$ of $n$ letters and each $1\leq i\leq n-1$ such that $\pi(i) > \pi(i+1)$ we set $w_i=1$, otherwise $w_i=0$.
Thus, the length of the word is one less the size of the permutation. In particular, the descent word is undefined for the empty permutation.