Identifier
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00116: Perfect matchings Kasraoui-ZengPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
Mp00109: Permutations descent wordBinary words
Images
=>
Cc0005;cc-rep-0Cc0012;cc-rep-1Cc0012;cc-rep-2
[1,0]=>[(1,2)]=>[(1,2)]=>[2,1]=>1 [1,0,1,0]=>[(1,2),(3,4)]=>[(1,2),(3,4)]=>[2,1,4,3]=>101 [1,1,0,0]=>[(1,4),(2,3)]=>[(1,3),(2,4)]=>[3,4,1,2]=>010 [1,0,1,0,1,0]=>[(1,2),(3,4),(5,6)]=>[(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>10101 [1,0,1,1,0,0]=>[(1,2),(3,6),(4,5)]=>[(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>10010 [1,1,0,0,1,0]=>[(1,4),(2,3),(5,6)]=>[(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>01001 [1,1,0,1,0,0]=>[(1,6),(2,3),(4,5)]=>[(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>01010 [1,1,1,0,0,0]=>[(1,6),(2,5),(3,4)]=>[(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>00100 [1,0,1,0,1,0,1,0]=>[(1,2),(3,4),(5,6),(7,8)]=>[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>1010101 [1,0,1,0,1,1,0,0]=>[(1,2),(3,4),(5,8),(6,7)]=>[(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>1010010 [1,0,1,1,0,0,1,0]=>[(1,2),(3,6),(4,5),(7,8)]=>[(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>1001001 [1,0,1,1,0,1,0,0]=>[(1,2),(3,8),(4,5),(6,7)]=>[(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>1001010 [1,0,1,1,1,0,0,0]=>[(1,2),(3,8),(4,7),(5,6)]=>[(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>1000100 [1,1,0,0,1,0,1,0]=>[(1,4),(2,3),(5,6),(7,8)]=>[(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>0100101 [1,1,0,0,1,1,0,0]=>[(1,4),(2,3),(5,8),(6,7)]=>[(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>0100010 [1,1,0,1,0,0,1,0]=>[(1,6),(2,3),(4,5),(7,8)]=>[(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>0101001 [1,1,0,1,0,1,0,0]=>[(1,8),(2,3),(4,5),(6,7)]=>[(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>0101010 [1,1,0,1,1,0,0,0]=>[(1,8),(2,3),(4,7),(5,6)]=>[(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>0100100 [1,1,1,0,0,0,1,0]=>[(1,6),(2,5),(3,4),(7,8)]=>[(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>0010001 [1,1,1,0,0,1,0,0]=>[(1,8),(2,5),(3,4),(6,7)]=>[(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>0010010 [1,1,1,0,1,0,0,0]=>[(1,8),(2,7),(3,4),(5,6)]=>[(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>0010100 [1,1,1,1,0,0,0,0]=>[(1,8),(2,7),(3,6),(4,5)]=>[(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>0001000 [1,0,1,0,1,0,1,0,1,0]=>[(1,2),(3,4),(5,6),(7,8),(9,10)]=>[(1,2),(3,4),(5,6),(7,8),(9,10)]=>[2,1,4,3,6,5,8,7,10,9]=>101010101 [1,0,1,0,1,0,1,0,1,0,1,0]=>[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>10101010101
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.
Map
Kasraoui-Zeng
Description
The Kasraoui-Zeng involution for perfect matchings.
This yields the perfect matching with the number of nestings and crossings exchanged.
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
descent word
Description
The descent positions of a permutation as a binary word.
For a permutation $\pi$ of $n$ letters and each $1\leq i\leq n-1$ such that $\pi(i) > \pi(i+1)$ we set $w_i=1$, otherwise $w_i=0$.
Thus, the length of the word is one less the size of the permutation. In particular, the descent word is undefined for the empty permutation.