Identifier
Mp00058:
Perfect matchings
—to permutation⟶
Permutations
Mp00131: Permutations —descent bottoms⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
Mp00131: Permutations —descent bottoms⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
Images
=>
Cc0012;cc-rep-0
[(1,2)]=>[2,1]=>1=>1
[(1,2),(3,4)]=>[2,1,4,3]=>101=>101
[(1,3),(2,4)]=>[3,4,1,2]=>100=>001
[(1,4),(2,3)]=>[4,3,2,1]=>111=>111
[(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>10101=>10101
[(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>10001=>10001
[(1,4),(2,3),(5,6)]=>[4,3,2,1,6,5]=>11101=>10111
[(1,5),(2,3),(4,6)]=>[5,3,2,6,1,4]=>11100=>00111
[(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>11110=>01111
[(1,6),(2,4),(3,5)]=>[6,4,5,2,3,1]=>11010=>01011
[(1,5),(2,4),(3,6)]=>[5,4,6,2,1,3]=>11010=>01011
[(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>10000=>00001
[(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>11000=>00011
[(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>10100=>00101
[(1,2),(3,6),(4,5)]=>[2,1,6,5,4,3]=>10111=>11101
[(1,3),(2,6),(4,5)]=>[3,6,1,5,4,2]=>11010=>01011
[(1,4),(2,6),(3,5)]=>[4,6,5,1,3,2]=>11001=>10011
[(1,5),(2,6),(3,4)]=>[5,6,4,3,1,2]=>10110=>01101
[(1,6),(2,5),(3,4)]=>[6,5,4,3,2,1]=>11111=>11111
[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>1010101=>1010101
[(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>1000101=>1010001
[(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>1110101=>1010111
[(1,5),(2,3),(4,6),(7,8)]=>[5,3,2,6,1,4,8,7]=>1110001=>1000111
[(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>1111001=>1001111
[(1,7),(2,3),(4,5),(6,8)]=>[7,3,2,5,4,8,1,6]=>1111000=>0001111
[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>1111010=>0101111
[(1,8),(2,4),(3,5),(6,7)]=>[8,4,5,2,3,7,6,1]=>1101010=>0101011
[(1,7),(2,4),(3,5),(6,8)]=>[7,4,5,2,3,8,1,6]=>1101000=>0001011
[(1,6),(2,4),(3,5),(7,8)]=>[6,4,5,2,3,1,8,7]=>1101001=>1001011
[(1,5),(2,4),(3,6),(7,8)]=>[5,4,6,2,1,3,8,7]=>1101001=>1001011
[(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>1000001=>1000001
[(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>1100001=>1000011
[(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>1010001=>1000101
[(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>1011101=>1011101
[(1,3),(2,6),(4,5),(7,8)]=>[3,6,1,5,4,2,8,7]=>1101001=>1001011
[(1,4),(2,6),(3,5),(7,8)]=>[4,6,5,1,3,2,8,7]=>1100101=>1010011
[(1,5),(2,6),(3,4),(7,8)]=>[5,6,4,3,1,2,8,7]=>1011001=>1001101
[(1,6),(2,5),(3,4),(7,8)]=>[6,5,4,3,2,1,8,7]=>1111101=>1011111
[(1,7),(2,5),(3,4),(6,8)]=>[7,5,4,3,2,8,1,6]=>1111100=>0011111
[(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>1111110=>0111111
[(1,8),(2,6),(3,4),(5,7)]=>[8,6,4,3,7,2,5,1]=>1111010=>0101111
[(1,7),(2,6),(3,4),(5,8)]=>[7,6,4,3,8,2,1,5]=>1111010=>0101111
[(1,6),(2,7),(3,4),(5,8)]=>[6,7,4,3,8,1,2,5]=>1011000=>0001101
[(1,5),(2,7),(3,4),(6,8)]=>[5,7,4,3,1,8,2,6]=>1111000=>0001111
[(1,4),(2,7),(3,5),(6,8)]=>[4,7,5,1,3,8,2,6]=>1100100=>0010011
[(1,3),(2,7),(4,5),(6,8)]=>[3,7,1,5,4,8,2,6]=>1101000=>0001011
[(1,2),(3,7),(4,5),(6,8)]=>[2,1,7,5,4,8,3,6]=>1011100=>0011101
[(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>1011110=>0111101
[(1,3),(2,8),(4,5),(6,7)]=>[3,8,1,5,4,7,6,2]=>1101010=>0101011
[(1,4),(2,8),(3,5),(6,7)]=>[4,8,5,1,3,7,6,2]=>1100110=>0110011
[(1,5),(2,8),(3,4),(6,7)]=>[5,8,4,3,1,7,6,2]=>1111010=>0101111
[(1,6),(2,8),(3,4),(5,7)]=>[6,8,4,3,7,1,5,2]=>1111000=>0001111
[(1,7),(2,8),(3,4),(5,6)]=>[7,8,4,3,6,5,1,2]=>1011100=>0011101
[(1,8),(2,7),(3,4),(5,6)]=>[8,7,4,3,6,5,2,1]=>1111101=>1011111
[(1,8),(2,7),(3,5),(4,6)]=>[8,7,5,6,3,4,2,1]=>1110101=>1010111
[(1,7),(2,8),(3,5),(4,6)]=>[7,8,5,6,3,4,1,2]=>1010100=>0010101
[(1,6),(2,8),(3,5),(4,7)]=>[6,8,5,7,3,1,4,2]=>1110100=>0010111
[(1,5),(2,8),(3,6),(4,7)]=>[5,8,6,7,1,3,4,2]=>1100010=>0100011
[(1,4),(2,8),(3,6),(5,7)]=>[4,8,6,1,7,3,5,2]=>1110010=>0100111
[(1,3),(2,8),(4,6),(5,7)]=>[3,8,1,6,7,4,5,2]=>1101000=>0001011
[(1,2),(3,8),(4,6),(5,7)]=>[2,1,8,6,7,4,5,3]=>1011010=>0101101
[(1,2),(3,7),(4,6),(5,8)]=>[2,1,7,6,8,4,3,5]=>1011010=>0101101
[(1,3),(2,7),(4,6),(5,8)]=>[3,7,1,6,8,4,2,5]=>1101000=>0001011
[(1,4),(2,7),(3,6),(5,8)]=>[4,7,6,1,8,3,2,5]=>1110010=>0100111
[(1,5),(2,7),(3,6),(4,8)]=>[5,7,6,8,1,3,2,4]=>1100010=>0100011
[(1,6),(2,7),(3,5),(4,8)]=>[6,7,5,8,3,1,2,4]=>1010100=>0010101
[(1,7),(2,6),(3,5),(4,8)]=>[7,6,5,8,3,2,1,4]=>1110110=>0110111
[(1,8),(2,6),(3,5),(4,7)]=>[8,6,5,7,3,2,4,1]=>1110110=>0110111
[(1,8),(2,5),(3,6),(4,7)]=>[8,5,6,7,2,3,4,1]=>1100100=>0010011
[(1,7),(2,5),(3,6),(4,8)]=>[7,5,6,8,2,3,1,4]=>1100100=>0010011
[(1,6),(2,5),(3,7),(4,8)]=>[6,5,7,8,2,1,3,4]=>1100100=>0010011
[(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>1000000=>0000001
[(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>1100000=>0000011
[(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>1100000=>0000011
[(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>1010000=>0000101
[(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>1011000=>0001101
[(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>1101000=>0001011
[(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>1010000=>0000101
[(1,5),(2,4),(3,7),(6,8)]=>[5,4,7,2,1,8,3,6]=>1111000=>0001111
[(1,6),(2,4),(3,7),(5,8)]=>[6,4,7,2,8,1,3,5]=>1101000=>0001011
[(1,7),(2,4),(3,6),(5,8)]=>[7,4,6,2,8,3,1,5]=>1111000=>0001111
[(1,8),(2,4),(3,6),(5,7)]=>[8,4,6,2,7,3,5,1]=>1111000=>0001111
[(1,8),(2,3),(4,6),(5,7)]=>[8,3,2,6,7,4,5,1]=>1111000=>0001111
[(1,7),(2,3),(4,6),(5,8)]=>[7,3,2,6,8,4,1,5]=>1111000=>0001111
[(1,6),(2,3),(4,7),(5,8)]=>[6,3,2,7,8,1,4,5]=>1110000=>0000111
[(1,5),(2,3),(4,7),(6,8)]=>[5,3,2,7,1,8,4,6]=>1111000=>0001111
[(1,4),(2,3),(5,7),(6,8)]=>[4,3,2,1,7,8,5,6]=>1110100=>0010111
[(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>1000100=>0010001
[(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>1010100=>0010101
[(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>1010111=>1110101
[(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,8,7,6,5]=>1000111=>1110001
[(1,4),(2,3),(5,8),(6,7)]=>[4,3,2,1,8,7,6,5]=>1110111=>1110111
[(1,5),(2,3),(4,8),(6,7)]=>[5,3,2,8,1,7,6,4]=>1111010=>0101111
[(1,6),(2,3),(4,8),(5,7)]=>[6,3,2,8,7,1,5,4]=>1111001=>1001111
[(1,7),(2,3),(4,8),(5,6)]=>[7,3,2,8,6,5,1,4]=>1110110=>0110111
[(1,8),(2,3),(4,7),(5,6)]=>[8,3,2,7,6,5,4,1]=>1111110=>0111111
[(1,8),(2,4),(3,7),(5,6)]=>[8,4,7,2,6,5,3,1]=>1111100=>0011111
[(1,7),(2,4),(3,8),(5,6)]=>[7,4,8,2,6,5,1,3]=>1101100=>0011011
[(1,6),(2,4),(3,8),(5,7)]=>[6,4,8,2,7,1,5,3]=>1111000=>0001111
[(1,5),(2,4),(3,8),(6,7)]=>[5,4,8,2,1,7,6,3]=>1111010=>0101111
[(1,4),(2,5),(3,8),(6,7)]=>[4,5,8,1,2,7,6,3]=>1010010=>0100101
[(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,8,2,7,6,4]=>1101010=>0101011
[(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,8,3,7,6,4]=>1011010=>0101101
[(1,2),(3,6),(4,8),(5,7)]=>[2,1,6,8,7,3,5,4]=>1011001=>1001101
[(1,3),(2,6),(4,8),(5,7)]=>[3,6,1,8,7,2,5,4]=>1101001=>1001011
[(1,4),(2,6),(3,8),(5,7)]=>[4,6,8,1,7,2,5,3]=>1110000=>0000111
[(1,5),(2,6),(3,8),(4,7)]=>[5,6,8,7,1,2,4,3]=>1010001=>1000101
[(1,6),(2,5),(3,8),(4,7)]=>[6,5,8,7,2,1,4,3]=>1110101=>1010111
[(1,7),(2,5),(3,8),(4,6)]=>[7,5,8,6,2,4,1,3]=>1100110=>0110011
[(1,8),(2,5),(3,7),(4,6)]=>[8,5,7,6,2,4,3,1]=>1110110=>0110111
[(1,8),(2,6),(3,7),(4,5)]=>[8,6,7,5,4,2,3,1]=>1101110=>0111011
[(1,7),(2,6),(3,8),(4,5)]=>[7,6,8,5,4,2,1,3]=>1101110=>0111011
[(1,6),(2,7),(3,8),(4,5)]=>[6,7,8,5,4,1,2,3]=>1001100=>0011001
[(1,5),(2,7),(3,8),(4,6)]=>[5,7,8,6,1,4,2,3]=>1100010=>0100011
[(1,4),(2,7),(3,8),(5,6)]=>[4,7,8,1,6,5,2,3]=>1100100=>0010011
[(1,3),(2,7),(4,8),(5,6)]=>[3,7,1,8,6,5,2,4]=>1100110=>0110011
[(1,2),(3,7),(4,8),(5,6)]=>[2,1,7,8,6,5,3,4]=>1010110=>0110101
[(1,2),(3,8),(4,7),(5,6)]=>[2,1,8,7,6,5,4,3]=>1011111=>1111101
[(1,3),(2,8),(4,7),(5,6)]=>[3,8,1,7,6,5,4,2]=>1101110=>0111011
[(1,4),(2,8),(3,7),(5,6)]=>[4,8,7,1,6,5,3,2]=>1110101=>1010111
[(1,5),(2,8),(3,7),(4,6)]=>[5,8,7,6,1,4,3,2]=>1110011=>1100111
[(1,6),(2,8),(3,7),(4,5)]=>[6,8,7,5,4,1,3,2]=>1101101=>1011011
[(1,7),(2,8),(3,6),(4,5)]=>[7,8,6,5,4,3,1,2]=>1011110=>0111101
[(1,8),(2,7),(3,6),(4,5)]=>[8,7,6,5,4,3,2,1]=>1111111=>1111111
[(1,2),(3,4),(5,6),(7,8),(9,10)]=>[2,1,4,3,6,5,8,7,10,9]=>101010101=>101010101
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>10101010101=>10101010101
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
descent bottoms
Description
The descent bottoms of a permutation as a binary word.
Map
reverse
Description
Return the reversal of a binary word.
searching the database
Sorry, this map was not found in the database.