Identifier
Mp00058:
Perfect matchings
—to permutation⟶
Permutations
Mp00130: Permutations —descent tops⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
Mp00130: Permutations —descent tops⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
Images
=>
Cc0012;cc-rep-0
[(1,2)]=>[2,1]=>1=>1
[(1,2),(3,4)]=>[2,1,4,3]=>101=>101
[(1,3),(2,4)]=>[3,4,1,2]=>001=>100
[(1,4),(2,3)]=>[4,3,2,1]=>111=>111
[(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>10101=>10101
[(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>00101=>10100
[(1,4),(2,3),(5,6)]=>[4,3,2,1,6,5]=>11101=>10111
[(1,5),(2,3),(4,6)]=>[5,3,2,6,1,4]=>01011=>11010
[(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>01111=>11110
[(1,6),(2,4),(3,5)]=>[6,4,5,2,3,1]=>01011=>11010
[(1,5),(2,4),(3,6)]=>[5,4,6,2,1,3]=>10011=>11001
[(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>00001=>10000
[(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>00011=>11000
[(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>10001=>10001
[(1,2),(3,6),(4,5)]=>[2,1,6,5,4,3]=>10111=>11101
[(1,3),(2,6),(4,5)]=>[3,6,1,5,4,2]=>00111=>11100
[(1,4),(2,6),(3,5)]=>[4,6,5,1,3,2]=>01011=>11010
[(1,5),(2,6),(3,4)]=>[5,6,4,3,1,2]=>01101=>10110
[(1,6),(2,5),(3,4)]=>[6,5,4,3,2,1]=>11111=>11111
[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>1010101=>1010101
[(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>0010101=>1010100
[(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>1110101=>1010111
[(1,5),(2,3),(4,6),(7,8)]=>[5,3,2,6,1,4,8,7]=>0101101=>1011010
[(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>0111101=>1011110
[(1,7),(2,3),(4,5),(6,8)]=>[7,3,2,5,4,8,1,6]=>0101011=>1101010
[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>0101111=>1111010
[(1,8),(2,4),(3,5),(6,7)]=>[8,4,5,2,3,7,6,1]=>0001111=>1111000
[(1,7),(2,4),(3,5),(6,8)]=>[7,4,5,2,3,8,1,6]=>0001011=>1101000
[(1,6),(2,4),(3,5),(7,8)]=>[6,4,5,2,3,1,8,7]=>0101101=>1011010
[(1,5),(2,4),(3,6),(7,8)]=>[5,4,6,2,1,3,8,7]=>1001101=>1011001
[(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>0000101=>1010000
[(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>0001101=>1011000
[(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>1000101=>1010001
[(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>1011101=>1011101
[(1,3),(2,6),(4,5),(7,8)]=>[3,6,1,5,4,2,8,7]=>0011101=>1011100
[(1,4),(2,6),(3,5),(7,8)]=>[4,6,5,1,3,2,8,7]=>0101101=>1011010
[(1,5),(2,6),(3,4),(7,8)]=>[5,6,4,3,1,2,8,7]=>0110101=>1010110
[(1,6),(2,5),(3,4),(7,8)]=>[6,5,4,3,2,1,8,7]=>1111101=>1011111
[(1,7),(2,5),(3,4),(6,8)]=>[7,5,4,3,2,8,1,6]=>0111011=>1101110
[(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>0111111=>1111110
[(1,8),(2,6),(3,4),(5,7)]=>[8,6,4,3,7,2,5,1]=>0011111=>1111100
[(1,7),(2,6),(3,4),(5,8)]=>[7,6,4,3,8,2,1,5]=>1010111=>1110101
[(1,6),(2,7),(3,4),(5,8)]=>[6,7,4,3,8,1,2,5]=>0010011=>1100100
[(1,5),(2,7),(3,4),(6,8)]=>[5,7,4,3,1,8,2,6]=>0110011=>1100110
[(1,4),(2,7),(3,5),(6,8)]=>[4,7,5,1,3,8,2,6]=>0001011=>1101000
[(1,3),(2,7),(4,5),(6,8)]=>[3,7,1,5,4,8,2,6]=>0001011=>1101000
[(1,2),(3,7),(4,5),(6,8)]=>[2,1,7,5,4,8,3,6]=>1001011=>1101001
[(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>1001111=>1111001
[(1,3),(2,8),(4,5),(6,7)]=>[3,8,1,5,4,7,6,2]=>0001111=>1111000
[(1,4),(2,8),(3,5),(6,7)]=>[4,8,5,1,3,7,6,2]=>0001111=>1111000
[(1,5),(2,8),(3,4),(6,7)]=>[5,8,4,3,1,7,6,2]=>0110111=>1110110
[(1,6),(2,8),(3,4),(5,7)]=>[6,8,4,3,7,1,5,2]=>0011011=>1101100
[(1,7),(2,8),(3,4),(5,6)]=>[7,8,4,3,6,5,1,2]=>0011101=>1011100
[(1,8),(2,7),(3,4),(5,6)]=>[8,7,4,3,6,5,2,1]=>1011111=>1111101
[(1,8),(2,7),(3,5),(4,6)]=>[8,7,5,6,3,4,2,1]=>1010111=>1110101
[(1,7),(2,8),(3,5),(4,6)]=>[7,8,5,6,3,4,1,2]=>0010101=>1010100
[(1,6),(2,8),(3,5),(4,7)]=>[6,8,5,7,3,1,4,2]=>0110011=>1100110
[(1,5),(2,8),(3,6),(4,7)]=>[5,8,6,7,1,3,4,2]=>0010011=>1100100
[(1,4),(2,8),(3,6),(5,7)]=>[4,8,6,1,7,3,5,2]=>0001111=>1111000
[(1,3),(2,8),(4,6),(5,7)]=>[3,8,1,6,7,4,5,2]=>0001011=>1101000
[(1,2),(3,8),(4,6),(5,7)]=>[2,1,8,6,7,4,5,3]=>1001011=>1101001
[(1,2),(3,7),(4,6),(5,8)]=>[2,1,7,6,8,4,3,5]=>1010011=>1100101
[(1,3),(2,7),(4,6),(5,8)]=>[3,7,1,6,8,4,2,5]=>0010011=>1100100
[(1,4),(2,7),(3,6),(5,8)]=>[4,7,6,1,8,3,2,5]=>0100111=>1110010
[(1,5),(2,7),(3,6),(4,8)]=>[5,7,6,8,1,3,2,4]=>0100011=>1100010
[(1,6),(2,7),(3,5),(4,8)]=>[6,7,5,8,3,1,2,4]=>0100011=>1100010
[(1,7),(2,6),(3,5),(4,8)]=>[7,6,5,8,3,2,1,4]=>1100111=>1110011
[(1,8),(2,6),(3,5),(4,7)]=>[8,6,5,7,3,2,4,1]=>0110111=>1110110
[(1,8),(2,5),(3,6),(4,7)]=>[8,5,6,7,2,3,4,1]=>0010011=>1100100
[(1,7),(2,5),(3,6),(4,8)]=>[7,5,6,8,2,3,1,4]=>0100011=>1100010
[(1,6),(2,5),(3,7),(4,8)]=>[6,5,7,8,2,1,3,4]=>1000101=>1010001
[(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>0000001=>1000000
[(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>0000011=>1100000
[(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>0000101=>1010000
[(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>1000001=>1000001
[(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>1000011=>1100001
[(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>0001011=>1101000
[(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>0000011=>1100000
[(1,5),(2,4),(3,7),(6,8)]=>[5,4,7,2,1,8,3,6]=>1001011=>1101001
[(1,6),(2,4),(3,7),(5,8)]=>[6,4,7,2,8,1,3,5]=>0000111=>1110000
[(1,7),(2,4),(3,6),(5,8)]=>[7,4,6,2,8,3,1,5]=>0100111=>1110010
[(1,8),(2,4),(3,6),(5,7)]=>[8,4,6,2,7,3,5,1]=>0001111=>1111000
[(1,8),(2,3),(4,6),(5,7)]=>[8,3,2,6,7,4,5,1]=>0101011=>1101010
[(1,7),(2,3),(4,6),(5,8)]=>[7,3,2,6,8,4,1,5]=>0110011=>1100110
[(1,6),(2,3),(4,7),(5,8)]=>[6,3,2,7,8,1,4,5]=>0100101=>1010010
[(1,5),(2,3),(4,7),(6,8)]=>[5,3,2,7,1,8,4,6]=>0101011=>1101010
[(1,4),(2,3),(5,7),(6,8)]=>[4,3,2,1,7,8,5,6]=>1110001=>1000111
[(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>0010001=>1000100
[(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>1010001=>1000101
[(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>1010111=>1110101
[(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,8,7,6,5]=>0010111=>1110100
[(1,4),(2,3),(5,8),(6,7)]=>[4,3,2,1,8,7,6,5]=>1110111=>1110111
[(1,5),(2,3),(4,8),(6,7)]=>[5,3,2,8,1,7,6,4]=>0101111=>1111010
[(1,6),(2,3),(4,8),(5,7)]=>[6,3,2,8,7,1,5,4]=>0101111=>1111010
[(1,7),(2,3),(4,8),(5,6)]=>[7,3,2,8,6,5,1,4]=>0101111=>1111010
[(1,8),(2,3),(4,7),(5,6)]=>[8,3,2,7,6,5,4,1]=>0111111=>1111110
[(1,8),(2,4),(3,7),(5,6)]=>[8,4,7,2,6,5,3,1]=>0101111=>1111010
[(1,7),(2,4),(3,8),(5,6)]=>[7,4,8,2,6,5,1,3]=>0001111=>1111000
[(1,6),(2,4),(3,8),(5,7)]=>[6,4,8,2,7,1,5,3]=>0001111=>1111000
[(1,5),(2,4),(3,8),(6,7)]=>[5,4,8,2,1,7,6,3]=>1001111=>1111001
[(1,4),(2,5),(3,8),(6,7)]=>[4,5,8,1,2,7,6,3]=>0000111=>1110000
[(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,8,2,7,6,4]=>0001111=>1111000
[(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,8,3,7,6,4]=>1000111=>1110001
[(1,2),(3,6),(4,8),(5,7)]=>[2,1,6,8,7,3,5,4]=>1001011=>1101001
[(1,3),(2,6),(4,8),(5,7)]=>[3,6,1,8,7,2,5,4]=>0001111=>1111000
[(1,4),(2,6),(3,8),(5,7)]=>[4,6,8,1,7,2,5,3]=>0001011=>1101000
[(1,5),(2,6),(3,8),(4,7)]=>[5,6,8,7,1,2,4,3]=>0010011=>1100100
[(1,6),(2,5),(3,8),(4,7)]=>[6,5,8,7,2,1,4,3]=>1010111=>1110101
[(1,7),(2,5),(3,8),(4,6)]=>[7,5,8,6,2,4,1,3]=>0010111=>1110100
[(1,8),(2,5),(3,7),(4,6)]=>[8,5,7,6,2,4,3,1]=>0110111=>1110110
[(1,8),(2,6),(3,7),(4,5)]=>[8,6,7,5,4,2,3,1]=>0111011=>1101110
[(1,7),(2,6),(3,8),(4,5)]=>[7,6,8,5,4,2,1,3]=>1011011=>1101101
[(1,6),(2,7),(3,8),(4,5)]=>[6,7,8,5,4,1,2,3]=>0011001=>1001100
[(1,5),(2,7),(3,8),(4,6)]=>[5,7,8,6,1,4,2,3]=>0010101=>1010100
[(1,4),(2,7),(3,8),(5,6)]=>[4,7,8,1,6,5,2,3]=>0001101=>1011000
[(1,3),(2,7),(4,8),(5,6)]=>[3,7,1,8,6,5,2,4]=>0001111=>1111000
[(1,2),(3,7),(4,8),(5,6)]=>[2,1,7,8,6,5,3,4]=>1001101=>1011001
[(1,2),(3,8),(4,7),(5,6)]=>[2,1,8,7,6,5,4,3]=>1011111=>1111101
[(1,3),(2,8),(4,7),(5,6)]=>[3,8,1,7,6,5,4,2]=>0011111=>1111100
[(1,4),(2,8),(3,7),(5,6)]=>[4,8,7,1,6,5,3,2]=>0101111=>1111010
[(1,5),(2,8),(3,7),(4,6)]=>[5,8,7,6,1,4,3,2]=>0110111=>1110110
[(1,6),(2,8),(3,7),(4,5)]=>[6,8,7,5,4,1,3,2]=>0111011=>1101110
[(1,7),(2,8),(3,6),(4,5)]=>[7,8,6,5,4,3,1,2]=>0111101=>1011110
[(1,8),(2,7),(3,6),(4,5)]=>[8,7,6,5,4,3,2,1]=>1111111=>1111111
[(1,2),(3,4),(5,6),(7,8),(9,10)]=>[2,1,4,3,6,5,8,7,10,9]=>101010101=>101010101
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>[2,1,4,3,6,5,8,7,10,9,12,11]=>10101010101=>10101010101
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
descent tops
Description
The descent tops of a permutation as a binary word.
Since 1 is never a descent top, it is omitted and the first letter of the word corresponds to the element 2.
Since 1 is never a descent top, it is omitted and the first letter of the word corresponds to the element 2.
Map
reverse
Description
Return the reversal of a binary word.
searching the database
Sorry, this map was not found in the database.