Identifier
Mp00045:
Integer partitions
—reading tableau⟶
Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00062: Permutations —Lehmer-code to major-code bijection⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Images
=>
Cc0002;cc-rep-0Cc0007;cc-rep-1
[1]=>[[1]]=>[1]=>[1]=>[1]
[2]=>[[1,2]]=>[1,2]=>[1,2]=>[1,2]
[1,1]=>[[1],[2]]=>[2,1]=>[2,1]=>[2,1]
[3]=>[[1,2,3]]=>[1,2,3]=>[1,2,3]=>[1,2,3]
[2,1]=>[[1,3],[2]]=>[2,1,3]=>[2,1,3]=>[2,1,3]
[1,1,1]=>[[1],[2],[3]]=>[3,2,1]=>[3,2,1]=>[3,2,1]
[4]=>[[1,2,3,4]]=>[1,2,3,4]=>[1,2,3,4]=>[1,2,3,4]
[3,1]=>[[1,3,4],[2]]=>[2,1,3,4]=>[2,1,3,4]=>[2,1,3,4]
[2,2]=>[[1,2],[3,4]]=>[3,4,1,2]=>[3,1,4,2]=>[3,4,1,2]
[2,1,1]=>[[1,4],[2],[3]]=>[3,2,1,4]=>[3,2,1,4]=>[3,2,1,4]
[1,1,1,1]=>[[1],[2],[3],[4]]=>[4,3,2,1]=>[4,3,2,1]=>[4,3,2,1]
[5]=>[[1,2,3,4,5]]=>[1,2,3,4,5]=>[1,2,3,4,5]=>[1,2,3,4,5]
[4,1]=>[[1,3,4,5],[2]]=>[2,1,3,4,5]=>[2,1,3,4,5]=>[2,1,3,4,5]
[3,2]=>[[1,2,5],[3,4]]=>[3,4,1,2,5]=>[3,1,4,2,5]=>[3,4,1,2,5]
[3,1,1]=>[[1,4,5],[2],[3]]=>[3,2,1,4,5]=>[3,2,1,4,5]=>[3,2,1,4,5]
[2,2,1]=>[[1,3],[2,5],[4]]=>[4,2,5,1,3]=>[2,4,1,5,3]=>[4,2,5,1,3]
[2,1,1,1]=>[[1,5],[2],[3],[4]]=>[4,3,2,1,5]=>[4,3,2,1,5]=>[4,3,2,1,5]
[1,1,1,1,1]=>[[1],[2],[3],[4],[5]]=>[5,4,3,2,1]=>[5,4,3,2,1]=>[5,4,3,2,1]
[6]=>[[1,2,3,4,5,6]]=>[1,2,3,4,5,6]=>[1,2,3,4,5,6]=>[1,2,3,4,5,6]
[5,1]=>[[1,3,4,5,6],[2]]=>[2,1,3,4,5,6]=>[2,1,3,4,5,6]=>[2,1,3,4,5,6]
[4,2]=>[[1,2,5,6],[3,4]]=>[3,4,1,2,5,6]=>[3,1,4,2,5,6]=>[3,4,1,2,5,6]
[4,1,1]=>[[1,4,5,6],[2],[3]]=>[3,2,1,4,5,6]=>[3,2,1,4,5,6]=>[3,2,1,4,5,6]
[3,3]=>[[1,2,3],[4,5,6]]=>[4,5,6,1,2,3]=>[4,1,5,2,6,3]=>[4,5,6,1,2,3]
[3,2,1]=>[[1,3,6],[2,5],[4]]=>[4,2,5,1,3,6]=>[2,4,1,5,3,6]=>[4,2,5,1,3,6]
[3,1,1,1]=>[[1,5,6],[2],[3],[4]]=>[4,3,2,1,5,6]=>[4,3,2,1,5,6]=>[4,3,2,1,5,6]
[2,2,2]=>[[1,2],[3,4],[5,6]]=>[5,6,3,4,1,2]=>[5,3,1,6,4,2]=>[5,6,3,4,1,2]
[2,2,1,1]=>[[1,4],[2,6],[3],[5]]=>[5,3,2,6,1,4]=>[3,2,5,1,6,4]=>[5,3,2,6,1,4]
[2,1,1,1,1]=>[[1,6],[2],[3],[4],[5]]=>[5,4,3,2,1,6]=>[5,4,3,2,1,6]=>[5,4,3,2,1,6]
[1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6]]=>[6,5,4,3,2,1]=>[6,5,4,3,2,1]=>[6,5,4,3,2,1]
[7]=>[[1,2,3,4,5,6,7]]=>[1,2,3,4,5,6,7]=>[1,2,3,4,5,6,7]=>[1,2,3,4,5,6,7]
[6,1]=>[[1,3,4,5,6,7],[2]]=>[2,1,3,4,5,6,7]=>[2,1,3,4,5,6,7]=>[2,1,3,4,5,6,7]
[5,2]=>[[1,2,5,6,7],[3,4]]=>[3,4,1,2,5,6,7]=>[3,1,4,2,5,6,7]=>[3,4,1,2,5,6,7]
[5,1,1]=>[[1,4,5,6,7],[2],[3]]=>[3,2,1,4,5,6,7]=>[3,2,1,4,5,6,7]=>[3,2,1,4,5,6,7]
[4,3]=>[[1,2,3,7],[4,5,6]]=>[4,5,6,1,2,3,7]=>[4,1,5,2,6,3,7]=>[4,5,6,1,2,3,7]
[4,2,1]=>[[1,3,6,7],[2,5],[4]]=>[4,2,5,1,3,6,7]=>[2,4,1,5,3,6,7]=>[4,2,5,1,3,6,7]
[4,1,1,1]=>[[1,5,6,7],[2],[3],[4]]=>[4,3,2,1,5,6,7]=>[4,3,2,1,5,6,7]=>[4,3,2,1,5,6,7]
[3,3,1]=>[[1,3,4],[2,6,7],[5]]=>[5,2,6,7,1,3,4]=>[5,6,2,1,3,7,4]=>[5,2,6,7,1,3,4]
[3,2,2]=>[[1,2,7],[3,4],[5,6]]=>[5,6,3,4,1,2,7]=>[5,3,1,6,4,2,7]=>[5,6,3,4,1,2,7]
[3,2,1,1]=>[[1,4,7],[2,6],[3],[5]]=>[5,3,2,6,1,4,7]=>[3,2,5,1,6,4,7]=>[5,3,2,6,1,4,7]
[3,1,1,1,1]=>[[1,6,7],[2],[3],[4],[5]]=>[5,4,3,2,1,6,7]=>[5,4,3,2,1,6,7]=>[5,4,3,2,1,6,7]
[2,2,2,1]=>[[1,3],[2,5],[4,7],[6]]=>[6,4,7,2,5,1,3]=>[4,2,6,1,7,5,3]=>[6,4,7,2,5,1,3]
[2,2,1,1,1]=>[[1,5],[2,7],[3],[4],[6]]=>[6,4,3,2,7,1,5]=>[4,3,2,6,1,7,5]=>[6,4,3,2,7,1,5]
[2,1,1,1,1,1]=>[[1,7],[2],[3],[4],[5],[6]]=>[6,5,4,3,2,1,7]=>[6,5,4,3,2,1,7]=>[6,5,4,3,2,1,7]
[1,1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,2,1]=>[7,6,5,4,3,2,1]=>[7,6,5,4,3,2,1]
[8]=>[[1,2,3,4,5,6,7,8]]=>[1,2,3,4,5,6,7,8]=>[1,2,3,4,5,6,7,8]=>[1,2,3,4,5,6,7,8]
[7,1]=>[[1,3,4,5,6,7,8],[2]]=>[2,1,3,4,5,6,7,8]=>[2,1,3,4,5,6,7,8]=>[2,1,3,4,5,6,7,8]
[6,2]=>[[1,2,5,6,7,8],[3,4]]=>[3,4,1,2,5,6,7,8]=>[3,1,4,2,5,6,7,8]=>[3,4,1,2,5,6,7,8]
[6,1,1]=>[[1,4,5,6,7,8],[2],[3]]=>[3,2,1,4,5,6,7,8]=>[3,2,1,4,5,6,7,8]=>[3,2,1,4,5,6,7,8]
[5,3]=>[[1,2,3,7,8],[4,5,6]]=>[4,5,6,1,2,3,7,8]=>[4,1,5,2,6,3,7,8]=>[4,5,6,1,2,3,7,8]
[5,2,1]=>[[1,3,6,7,8],[2,5],[4]]=>[4,2,5,1,3,6,7,8]=>[2,4,1,5,3,6,7,8]=>[4,2,5,1,3,6,7,8]
[5,1,1,1]=>[[1,5,6,7,8],[2],[3],[4]]=>[4,3,2,1,5,6,7,8]=>[4,3,2,1,5,6,7,8]=>[4,3,2,1,5,6,7,8]
[4,4]=>[[1,2,3,4],[5,6,7,8]]=>[5,6,7,8,1,2,3,4]=>[5,1,6,2,7,3,8,4]=>[5,6,7,8,1,2,3,4]
[4,3,1]=>[[1,3,4,8],[2,6,7],[5]]=>[5,2,6,7,1,3,4,8]=>[5,6,2,1,3,7,4,8]=>[5,2,6,7,1,3,4,8]
[4,2,2]=>[[1,2,7,8],[3,4],[5,6]]=>[5,6,3,4,1,2,7,8]=>[5,3,1,6,4,2,7,8]=>[5,6,3,4,1,2,7,8]
[4,2,1,1]=>[[1,4,7,8],[2,6],[3],[5]]=>[5,3,2,6,1,4,7,8]=>[3,2,5,1,6,4,7,8]=>[5,3,2,6,1,4,7,8]
[4,1,1,1,1]=>[[1,6,7,8],[2],[3],[4],[5]]=>[5,4,3,2,1,6,7,8]=>[5,4,3,2,1,6,7,8]=>[5,4,3,2,1,6,7,8]
[3,3,2]=>[[1,2,5],[3,4,8],[6,7]]=>[6,7,3,4,8,1,2,5]=>[3,6,4,1,7,2,8,5]=>[6,7,3,4,8,1,2,5]
[3,3,1,1]=>[[1,4,5],[2,7,8],[3],[6]]=>[6,3,2,7,8,1,4,5]=>[2,6,7,3,1,4,8,5]=>[6,2,7,3,8,1,4,5]
[3,2,2,1]=>[[1,3,8],[2,5],[4,7],[6]]=>[6,4,7,2,5,1,3,8]=>[4,2,6,1,7,5,3,8]=>[6,4,7,2,5,1,3,8]
[3,2,1,1,1]=>[[1,5,8],[2,7],[3],[4],[6]]=>[6,4,3,2,7,1,5,8]=>[4,3,2,6,1,7,5,8]=>[6,4,3,2,7,1,5,8]
[3,1,1,1,1,1]=>[[1,7,8],[2],[3],[4],[5],[6]]=>[6,5,4,3,2,1,7,8]=>[6,5,4,3,2,1,7,8]=>[6,5,4,3,2,1,7,8]
[2,2,2,2]=>[[1,2],[3,4],[5,6],[7,8]]=>[7,8,5,6,3,4,1,2]=>[7,5,3,1,8,6,4,2]=>[7,8,5,6,3,4,1,2]
[2,2,2,1,1]=>[[1,4],[2,6],[3,8],[5],[7]]=>[7,5,3,8,2,6,1,4]=>[3,5,2,7,1,8,6,4]=>[7,5,3,8,2,6,1,4]
[2,2,1,1,1,1]=>[[1,6],[2,8],[3],[4],[5],[7]]=>[7,5,4,3,2,8,1,6]=>[5,4,3,2,7,1,8,6]=>[7,5,4,3,2,8,1,6]
[2,1,1,1,1,1,1]=>[[1,8],[2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,2,1,8]=>[7,6,5,4,3,2,1,8]=>[7,6,5,4,3,2,1,8]
[1,1,1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6],[7],[8]]=>[8,7,6,5,4,3,2,1]=>[8,7,6,5,4,3,2,1]=>[8,7,6,5,4,3,2,1]
[9]=>[[1,2,3,4,5,6,7,8,9]]=>[1,2,3,4,5,6,7,8,9]=>[1,2,3,4,5,6,7,8,9]=>[1,2,3,4,5,6,7,8,9]
[8,1]=>[[1,3,4,5,6,7,8,9],[2]]=>[2,1,3,4,5,6,7,8,9]=>[2,1,3,4,5,6,7,8,9]=>[2,1,3,4,5,6,7,8,9]
[7,2]=>[[1,2,5,6,7,8,9],[3,4]]=>[3,4,1,2,5,6,7,8,9]=>[3,1,4,2,5,6,7,8,9]=>[3,4,1,2,5,6,7,8,9]
[7,1,1]=>[[1,4,5,6,7,8,9],[2],[3]]=>[3,2,1,4,5,6,7,8,9]=>[3,2,1,4,5,6,7,8,9]=>[3,2,1,4,5,6,7,8,9]
[6,3]=>[[1,2,3,7,8,9],[4,5,6]]=>[4,5,6,1,2,3,7,8,9]=>[4,1,5,2,6,3,7,8,9]=>[4,5,6,1,2,3,7,8,9]
[6,2,1]=>[[1,3,6,7,8,9],[2,5],[4]]=>[4,2,5,1,3,6,7,8,9]=>[2,4,1,5,3,6,7,8,9]=>[4,2,5,1,3,6,7,8,9]
[6,1,1,1]=>[[1,5,6,7,8,9],[2],[3],[4]]=>[4,3,2,1,5,6,7,8,9]=>[4,3,2,1,5,6,7,8,9]=>[4,3,2,1,5,6,7,8,9]
[5,4]=>[[1,2,3,4,9],[5,6,7,8]]=>[5,6,7,8,1,2,3,4,9]=>[5,1,6,2,7,3,8,4,9]=>[5,6,7,8,1,2,3,4,9]
[5,3,1]=>[[1,3,4,8,9],[2,6,7],[5]]=>[5,2,6,7,1,3,4,8,9]=>[5,6,2,1,3,7,4,8,9]=>[5,2,6,7,1,3,4,8,9]
[5,2,2]=>[[1,2,7,8,9],[3,4],[5,6]]=>[5,6,3,4,1,2,7,8,9]=>[5,3,1,6,4,2,7,8,9]=>[5,6,3,4,1,2,7,8,9]
[5,2,1,1]=>[[1,4,7,8,9],[2,6],[3],[5]]=>[5,3,2,6,1,4,7,8,9]=>[3,2,5,1,6,4,7,8,9]=>[5,3,2,6,1,4,7,8,9]
[5,1,1,1,1]=>[[1,6,7,8,9],[2],[3],[4],[5]]=>[5,4,3,2,1,6,7,8,9]=>[5,4,3,2,1,6,7,8,9]=>[5,4,3,2,1,6,7,8,9]
[4,4,1]=>[[1,3,4,5],[2,7,8,9],[6]]=>[6,2,7,8,9,1,3,4,5]=>[6,7,3,1,8,2,4,9,5]=>[6,3,7,8,1,9,2,4,5]
[4,3,2]=>[[1,2,5,9],[3,4,8],[6,7]]=>[6,7,3,4,8,1,2,5,9]=>[3,6,4,1,7,2,8,5,9]=>[6,7,3,4,8,1,2,5,9]
[4,3,1,1]=>[[1,4,5,9],[2,7,8],[3],[6]]=>[6,3,2,7,8,1,4,5,9]=>[2,6,7,3,1,4,8,5,9]=>[6,2,7,3,8,1,4,5,9]
[4,2,2,1]=>[[1,3,8,9],[2,5],[4,7],[6]]=>[6,4,7,2,5,1,3,8,9]=>[4,2,6,1,7,5,3,8,9]=>[6,4,7,2,5,1,3,8,9]
[4,2,1,1,1]=>[[1,5,8,9],[2,7],[3],[4],[6]]=>[6,4,3,2,7,1,5,8,9]=>[4,3,2,6,1,7,5,8,9]=>[6,4,3,2,7,1,5,8,9]
[4,1,1,1,1,1]=>[[1,7,8,9],[2],[3],[4],[5],[6]]=>[6,5,4,3,2,1,7,8,9]=>[6,5,4,3,2,1,7,8,9]=>[6,5,4,3,2,1,7,8,9]
[3,3,3]=>[[1,2,3],[4,5,6],[7,8,9]]=>[7,8,9,4,5,6,1,2,3]=>[7,4,1,8,5,2,9,6,3]=>[7,8,9,4,5,6,1,2,3]
[3,3,2,1]=>[[1,3,6],[2,5,9],[4,8],[7]]=>[7,4,8,2,5,9,1,3,6]=>[2,7,4,5,1,8,3,9,6]=>[7,8,2,4,5,9,1,3,6]
[3,3,1,1,1]=>[[1,5,6],[2,8,9],[3],[4],[7]]=>[7,4,3,2,8,9,1,5,6]=>[3,2,7,8,4,1,5,9,6]=>[7,3,8,2,4,9,1,5,6]
[3,2,2,2]=>[[1,2,9],[3,4],[5,6],[7,8]]=>[7,8,5,6,3,4,1,2,9]=>[7,5,3,1,8,6,4,2,9]=>[7,8,5,6,3,4,1,2,9]
[3,2,2,1,1]=>[[1,4,9],[2,6],[3,8],[5],[7]]=>[7,5,3,8,2,6,1,4,9]=>[3,5,2,7,1,8,6,4,9]=>[7,5,3,8,2,6,1,4,9]
[3,2,1,1,1,1]=>[[1,6,9],[2,8],[3],[4],[5],[7]]=>[7,5,4,3,2,8,1,6,9]=>[5,4,3,2,7,1,8,6,9]=>[7,5,4,3,2,8,1,6,9]
[3,1,1,1,1,1,1]=>[[1,8,9],[2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,2,1,8,9]=>[7,6,5,4,3,2,1,8,9]=>[7,6,5,4,3,2,1,8,9]
[2,2,2,2,1]=>[[1,3],[2,5],[4,7],[6,9],[8]]=>[8,6,9,4,7,2,5,1,3]=>[6,4,2,8,1,9,7,5,3]=>[8,6,9,4,7,2,5,1,3]
[2,2,2,1,1,1]=>[[1,5],[2,7],[3,9],[4],[6],[8]]=>[8,6,4,3,9,2,7,1,5]=>[4,3,6,2,8,1,9,7,5]=>[8,6,4,3,9,2,7,1,5]
[2,2,1,1,1,1,1]=>[[1,7],[2,9],[3],[4],[5],[6],[8]]=>[8,6,5,4,3,2,9,1,7]=>[6,5,4,3,2,8,1,9,7]=>[8,6,5,4,3,2,9,1,7]
[2,1,1,1,1,1,1,1]=>[[1,9],[2],[3],[4],[5],[6],[7],[8]]=>[8,7,6,5,4,3,2,1,9]=>[8,7,6,5,4,3,2,1,9]=>[8,7,6,5,4,3,2,1,9]
[1,1,1,1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6],[7],[8],[9]]=>[9,8,7,6,5,4,3,2,1]=>[9,8,7,6,5,4,3,2,1]=>[9,8,7,6,5,4,3,2,1]
[10]=>[[1,2,3,4,5,6,7,8,9,10]]=>[1,2,3,4,5,6,7,8,9,10]=>[1,2,3,4,5,6,7,8,9,10]=>[1,2,3,4,5,6,7,8,9,10]
[9,1]=>[[1,3,4,5,6,7,8,9,10],[2]]=>[2,1,3,4,5,6,7,8,9,10]=>[2,1,3,4,5,6,7,8,9,10]=>[2,1,3,4,5,6,7,8,9,10]
[8,2]=>[[1,2,5,6,7,8,9,10],[3,4]]=>[3,4,1,2,5,6,7,8,9,10]=>[3,1,4,2,5,6,7,8,9,10]=>[3,4,1,2,5,6,7,8,9,10]
[8,1,1]=>[[1,4,5,6,7,8,9,10],[2],[3]]=>[3,2,1,4,5,6,7,8,9,10]=>[3,2,1,4,5,6,7,8,9,10]=>[3,2,1,4,5,6,7,8,9,10]
[7,3]=>[[1,2,3,7,8,9,10],[4,5,6]]=>[4,5,6,1,2,3,7,8,9,10]=>[4,1,5,2,6,3,7,8,9,10]=>[4,5,6,1,2,3,7,8,9,10]
[7,2,1]=>[[1,3,6,7,8,9,10],[2,5],[4]]=>[4,2,5,1,3,6,7,8,9,10]=>[2,4,1,5,3,6,7,8,9,10]=>[4,2,5,1,3,6,7,8,9,10]
[7,1,1,1]=>[[1,5,6,7,8,9,10],[2],[3],[4]]=>[4,3,2,1,5,6,7,8,9,10]=>[4,3,2,1,5,6,7,8,9,10]=>[4,3,2,1,5,6,7,8,9,10]
[6,4]=>[[1,2,3,4,9,10],[5,6,7,8]]=>[5,6,7,8,1,2,3,4,9,10]=>[5,1,6,2,7,3,8,4,9,10]=>[5,6,7,8,1,2,3,4,9,10]
[6,3,1]=>[[1,3,4,8,9,10],[2,6,7],[5]]=>[5,2,6,7,1,3,4,8,9,10]=>[5,6,2,1,3,7,4,8,9,10]=>[5,2,6,7,1,3,4,8,9,10]
[6,2,2]=>[[1,2,7,8,9,10],[3,4],[5,6]]=>[5,6,3,4,1,2,7,8,9,10]=>[5,3,1,6,4,2,7,8,9,10]=>[5,6,3,4,1,2,7,8,9,10]
[6,2,1,1]=>[[1,4,7,8,9,10],[2,6],[3],[5]]=>[5,3,2,6,1,4,7,8,9,10]=>[3,2,5,1,6,4,7,8,9,10]=>[5,3,2,6,1,4,7,8,9,10]
[6,1,1,1,1]=>[[1,6,7,8,9,10],[2],[3],[4],[5]]=>[5,4,3,2,1,6,7,8,9,10]=>[5,4,3,2,1,6,7,8,9,10]=>[5,4,3,2,1,6,7,8,9,10]
[5,5]=>[[1,2,3,4,5],[6,7,8,9,10]]=>[6,7,8,9,10,1,2,3,4,5]=>[6,1,7,2,8,3,9,4,10,5]=>[6,7,8,9,10,1,2,3,4,5]
[5,4,1]=>[[1,3,4,5,10],[2,7,8,9],[6]]=>[6,2,7,8,9,1,3,4,5,10]=>[6,7,3,1,8,2,4,9,5,10]=>[6,3,7,8,1,9,2,4,5,10]
[5,3,2]=>[[1,2,5,9,10],[3,4,8],[6,7]]=>[6,7,3,4,8,1,2,5,9,10]=>[3,6,4,1,7,2,8,5,9,10]=>[6,7,3,4,8,1,2,5,9,10]
[5,3,1,1]=>[[1,4,5,9,10],[2,7,8],[3],[6]]=>[6,3,2,7,8,1,4,5,9,10]=>[2,6,7,3,1,4,8,5,9,10]=>[6,2,7,3,8,1,4,5,9,10]
[5,2,2,1]=>[[1,3,8,9,10],[2,5],[4,7],[6]]=>[6,4,7,2,5,1,3,8,9,10]=>[4,2,6,1,7,5,3,8,9,10]=>[6,4,7,2,5,1,3,8,9,10]
[5,2,1,1,1]=>[[1,5,8,9,10],[2,7],[3],[4],[6]]=>[6,4,3,2,7,1,5,8,9,10]=>[4,3,2,6,1,7,5,8,9,10]=>[6,4,3,2,7,1,5,8,9,10]
[5,1,1,1,1,1]=>[[1,7,8,9,10],[2],[3],[4],[5],[6]]=>[6,5,4,3,2,1,7,8,9,10]=>[6,5,4,3,2,1,7,8,9,10]=>[6,5,4,3,2,1,7,8,9,10]
[4,4,2]=>[[1,2,5,6],[3,4,9,10],[7,8]]=>[7,8,3,4,9,10,1,2,5,6]=>[3,4,7,1,8,2,9,5,10,6]=>[7,8,3,4,9,10,1,2,5,6]
[4,4,1,1]=>[[1,4,5,6],[2,8,9,10],[3],[7]]=>[7,3,2,8,9,10,1,4,5,6]=>[7,8,2,4,1,9,3,5,10,6]=>[7,2,8,4,9,1,10,3,5,6]
[4,3,3]=>[[1,2,3,10],[4,5,6],[7,8,9]]=>[7,8,9,4,5,6,1,2,3,10]=>[7,4,1,8,5,2,9,6,3,10]=>[7,8,9,4,5,6,1,2,3,10]
[4,3,2,1]=>[[1,3,6,10],[2,5,9],[4,8],[7]]=>[7,4,8,2,5,9,1,3,6,10]=>[2,7,4,5,1,8,3,9,6,10]=>[7,8,2,4,5,9,1,3,6,10]
[4,3,1,1,1]=>[[1,5,6,10],[2,8,9],[3],[4],[7]]=>[7,4,3,2,8,9,1,5,6,10]=>[3,2,7,8,4,1,5,9,6,10]=>[7,3,8,2,4,9,1,5,6,10]
[4,2,2,2]=>[[1,2,9,10],[3,4],[5,6],[7,8]]=>[7,8,5,6,3,4,1,2,9,10]=>[7,5,3,1,8,6,4,2,9,10]=>[7,8,5,6,3,4,1,2,9,10]
[4,2,2,1,1]=>[[1,4,9,10],[2,6],[3,8],[5],[7]]=>[7,5,3,8,2,6,1,4,9,10]=>[3,5,2,7,1,8,6,4,9,10]=>[7,5,3,8,2,6,1,4,9,10]
[4,2,1,1,1,1]=>[[1,6,9,10],[2,8],[3],[4],[5],[7]]=>[7,5,4,3,2,8,1,6,9,10]=>[5,4,3,2,7,1,8,6,9,10]=>[7,5,4,3,2,8,1,6,9,10]
[4,1,1,1,1,1,1]=>[[1,8,9,10],[2],[3],[4],[5],[6],[7]]=>[7,6,5,4,3,2,1,8,9,10]=>[7,6,5,4,3,2,1,8,9,10]=>[7,6,5,4,3,2,1,8,9,10]
[3,3,3,1]=>[[1,3,4],[2,6,7],[5,9,10],[8]]=>[8,5,9,10,2,6,7,1,3,4]=>[2,8,9,5,1,6,3,10,7,4]=>[8,9,5,2,10,6,7,1,3,4]
[3,3,2,2]=>[[1,2,7],[3,4,10],[5,6],[8,9]]=>[8,9,5,6,3,4,10,1,2,7]=>[5,3,8,6,4,1,9,2,10,7]=>[8,9,5,6,3,4,10,1,2,7]
[3,3,2,1,1]=>[[1,4,7],[2,6,10],[3,9],[5],[8]]=>[8,5,3,9,2,6,10,1,4,7]=>[8,3,2,5,6,1,9,4,10,7]=>[8,9,3,2,5,6,10,1,4,7]
[3,3,1,1,1,1]=>[[1,6,7],[2,9,10],[3],[4],[5],[8]]=>[8,5,4,3,2,9,10,1,6,7]=>[4,3,2,8,9,5,1,6,10,7]=>[8,4,9,3,2,5,10,1,6,7]
[3,2,2,2,1]=>[[1,3,10],[2,5],[4,7],[6,9],[8]]=>[8,6,9,4,7,2,5,1,3,10]=>[6,4,2,8,1,9,7,5,3,10]=>[8,6,9,4,7,2,5,1,3,10]
[3,2,2,1,1,1]=>[[1,5,10],[2,7],[3,9],[4],[6],[8]]=>[8,6,4,3,9,2,7,1,5,10]=>[4,3,6,2,8,1,9,7,5,10]=>[8,6,4,3,9,2,7,1,5,10]
[3,2,1,1,1,1,1]=>[[1,7,10],[2,9],[3],[4],[5],[6],[8]]=>[8,6,5,4,3,2,9,1,7,10]=>[6,5,4,3,2,8,1,9,7,10]=>[8,6,5,4,3,2,9,1,7,10]
[3,1,1,1,1,1,1,1]=>[[1,9,10],[2],[3],[4],[5],[6],[7],[8]]=>[8,7,6,5,4,3,2,1,9,10]=>[8,7,6,5,4,3,2,1,9,10]=>[8,7,6,5,4,3,2,1,9,10]
[2,2,2,2,2]=>[[1,2],[3,4],[5,6],[7,8],[9,10]]=>[9,10,7,8,5,6,3,4,1,2]=>[9,7,5,3,1,10,8,6,4,2]=>[9,10,7,8,5,6,3,4,1,2]
[2,2,2,2,1,1]=>[[1,4],[2,6],[3,8],[5,10],[7],[9]]=>[9,7,5,10,3,8,2,6,1,4]=>[5,3,7,2,9,1,10,8,6,4]=>[9,7,5,10,3,8,2,6,1,4]
[2,2,2,1,1,1,1]=>[[1,6],[2,8],[3,10],[4],[5],[7],[9]]=>[9,7,5,4,3,10,2,8,1,6]=>[5,4,3,7,2,9,1,10,8,6]=>[9,7,5,4,3,10,2,8,1,6]
[2,2,1,1,1,1,1,1]=>[[1,8],[2,10],[3],[4],[5],[6],[7],[9]]=>[9,7,6,5,4,3,2,10,1,8]=>[7,6,5,4,3,2,9,1,10,8]=>[9,7,6,5,4,3,2,10,1,8]
[2,1,1,1,1,1,1,1,1]=>[[1,10],[2],[3],[4],[5],[6],[7],[8],[9]]=>[9,8,7,6,5,4,3,2,1,10]=>[9,8,7,6,5,4,3,2,1,10]=>[9,8,7,6,5,4,3,2,1,10]
[1,1,1,1,1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]=>[10,9,8,7,6,5,4,3,2,1]=>[10,9,8,7,6,5,4,3,2,1]=>[10,9,8,7,6,5,4,3,2,1]
[12]=>[[1,2,3,4,5,6,7,8,9,10,11,12]]=>[1,2,3,4,5,6,7,8,9,10,11,12]=>[1,2,3,4,5,6,7,8,9,10,11,12]=>[1,2,3,4,5,6,7,8,9,10,11,12]
[6,6]=>[[1,2,3,4,5,6],[7,8,9,10,11,12]]=>[7,8,9,10,11,12,1,2,3,4,5,6]=>[7,1,8,2,9,3,10,4,11,5,12,6]=>[7,8,9,10,11,12,1,2,3,4,5,6]
[2,2,2,2,2,2]=>[[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]=>[11,12,9,10,7,8,5,6,3,4,1,2]=>[11,9,7,5,3,1,12,10,8,6,4,2]=>[11,12,9,10,7,8,5,6,3,4,1,2]
[1,1,1,1,1,1,1,1,1,1,1,1]=>[[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]=>[12,11,10,9,8,7,6,5,4,3,2,1]=>[12,11,10,9,8,7,6,5,4,3,2,1]=>[12,11,10,9,8,7,6,5,4,3,2,1]
[]=>[]=>[]=>[]=>[]
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
Lehmer-code to major-code bijection
Description
Sends a permutation to the unique permutation such that the Lehmer code is sent to the major code.
The Lehmer code encodes the inversions of a permutation and the major code encodes its major index. In particular, the number of inversions of a permutation equals the major index of its image under this map.
* The Lehmer code of a permutation $\sigma$ is given by $L(\sigma) = l_1 \ldots l_n$ with $l_i = \# \{ j > i : \sigma_j < \sigma_i \}$. In particular, $l_i$ is the number of boxes in the $i$-th column of the Rothe diagram. For example, the Lehmer code of $\sigma = [4,3,1,5,2]$ is $32010$. The Lehmer code $L : \mathfrak{S}_n\ \tilde\longrightarrow\ S_n$ is a bijection between permutations of size $n$ and sequences $l_1\ldots l_n \in \mathbf{N}^n$ with $l_i \leq i$.
* The major code $M(\sigma)$ of a permutation $\sigma \in \mathfrak{S}_n$ is a way to encode a permutation as a sequence $m_1 m_2 \ldots m_n$ with $m_i \geq i$. To define $m_i$, let $\operatorname{del}_i(\sigma)$ be the normalized permutation obtained by removing all $\sigma_j < i$ from the one-line notation of $\sigma$. The $i$-th index is then given by
$$m_i = \operatorname{maj}(\operatorname{del}_i(\sigma)) - \operatorname{maj}(\operatorname{del}_{i-1}(\sigma)).$$
For example, the permutation $[9,3,5,7,2,1,4,6,8]$ has major code $[5, 0, 1, 0, 1, 2, 0, 1, 0]$ since
$$\operatorname{maj}([8,2,4,6,1,3,5,7]) = 5, \quad \operatorname{maj}([7,1,3,5,2,4,6]) = 5, \quad \operatorname{maj}([6,2,4,1,3,5]) = 4,$$
$$\operatorname{maj}([5,1,3,2,4]) = 4, \quad \operatorname{maj}([4,2,1,3]) = 3, \quad \operatorname{maj}([3,1,2]) = 1, \quad \operatorname{maj}([2,1]) = 1.$$
Observe that the sum of the major code of $\sigma$ equals the major index of $\sigma$.
The Lehmer code encodes the inversions of a permutation and the major code encodes its major index. In particular, the number of inversions of a permutation equals the major index of its image under this map.
* The Lehmer code of a permutation $\sigma$ is given by $L(\sigma) = l_1 \ldots l_n$ with $l_i = \# \{ j > i : \sigma_j < \sigma_i \}$. In particular, $l_i$ is the number of boxes in the $i$-th column of the Rothe diagram. For example, the Lehmer code of $\sigma = [4,3,1,5,2]$ is $32010$. The Lehmer code $L : \mathfrak{S}_n\ \tilde\longrightarrow\ S_n$ is a bijection between permutations of size $n$ and sequences $l_1\ldots l_n \in \mathbf{N}^n$ with $l_i \leq i$.
* The major code $M(\sigma)$ of a permutation $\sigma \in \mathfrak{S}_n$ is a way to encode a permutation as a sequence $m_1 m_2 \ldots m_n$ with $m_i \geq i$. To define $m_i$, let $\operatorname{del}_i(\sigma)$ be the normalized permutation obtained by removing all $\sigma_j < i$ from the one-line notation of $\sigma$. The $i$-th index is then given by
$$m_i = \operatorname{maj}(\operatorname{del}_i(\sigma)) - \operatorname{maj}(\operatorname{del}_{i-1}(\sigma)).$$
For example, the permutation $[9,3,5,7,2,1,4,6,8]$ has major code $[5, 0, 1, 0, 1, 2, 0, 1, 0]$ since
$$\operatorname{maj}([8,2,4,6,1,3,5,7]) = 5, \quad \operatorname{maj}([7,1,3,5,2,4,6]) = 5, \quad \operatorname{maj}([6,2,4,1,3,5]) = 4,$$
$$\operatorname{maj}([5,1,3,2,4]) = 4, \quad \operatorname{maj}([4,2,1,3]) = 3, \quad \operatorname{maj}([3,1,2]) = 1, \quad \operatorname{maj}([2,1]) = 1.$$
Observe that the sum of the major code of $\sigma$ equals the major index of $\sigma$.
Map
Foata bijection
Description
Sends a permutation to its image under the Foata bijection.
The Foata bijection $\phi$ is a bijection on the set of words with no two equal letters. It can be defined by induction on the size of the word:
Given a word $w_1 w_2 ... w_n$, compute the image inductively by starting with $\phi(w_1) = w_1$.
At the $i$-th step, if $\phi(w_1 w_2 ... w_i) = v_1 v_2 ... v_i$, define $\phi(w_1 w_2 ... w_i w_{i+1})$ by placing $w_{i+1}$ on the end of the word $v_1 v_2 ... v_i$ and breaking the word up into blocks as follows.
To compute $\phi([1,4,2,5,3])$, the sequence of words is
This bijection sends the major index (St000004The major index of a permutation.) to the number of inversions (St000018The number of inversions of a permutation.).
The Foata bijection $\phi$ is a bijection on the set of words with no two equal letters. It can be defined by induction on the size of the word:
Given a word $w_1 w_2 ... w_n$, compute the image inductively by starting with $\phi(w_1) = w_1$.
At the $i$-th step, if $\phi(w_1 w_2 ... w_i) = v_1 v_2 ... v_i$, define $\phi(w_1 w_2 ... w_i w_{i+1})$ by placing $w_{i+1}$ on the end of the word $v_1 v_2 ... v_i$ and breaking the word up into blocks as follows.
- If $w_{i+1} \geq v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} \geq v_k$.
- If $w_{i+1} < v_i$, place a vertical line to the right of each $v_k$ for which $w_{i+1} < v_k$.
To compute $\phi([1,4,2,5,3])$, the sequence of words is
- $1$
- $|1|4 \to 14$
- $|14|2 \to 412$
- $|4|1|2|5 \to 4125$
- $|4|125|3 \to 45123.$
This bijection sends the major index (St000004The major index of a permutation.) to the number of inversions (St000018The number of inversions of a permutation.).
searching the database
Sorry, this map was not found in the database.