***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St001273 ----------------------------------------------------------------------------- Collection: Dyck paths ----------------------------------------------------------------------------- Description: The projective dimension of the first term in an injective coresolution of the regular module. The algebra has the double centraliser property when 0 is returned and it is 1-Gorenstein in case a number < =1 is returned. ----------------------------------------------------------------------------- References: ----------------------------------------------------------------------------- Code: ----------------------------------------------------------------------------- Statistic values: [1,0] => 1 [1,0,1,0] => 0 [1,1,0,0] => 1 [1,0,1,0,1,0] => 0 [1,0,1,1,0,0] => 1 [1,1,0,0,1,0] => 1 [1,1,0,1,0,0] => 2 [1,1,1,0,0,0] => 1 [1,0,1,0,1,0,1,0] => 0 [1,0,1,0,1,1,0,0] => 1 [1,0,1,1,0,0,1,0] => 0 [1,0,1,1,0,1,0,0] => 3 [1,0,1,1,1,0,0,0] => 1 [1,1,0,0,1,0,1,0] => 1 [1,1,0,0,1,1,0,0] => 1 [1,1,0,1,0,0,1,0] => 2 [1,1,0,1,0,1,0,0] => 0 [1,1,0,1,1,0,0,0] => 2 [1,1,1,0,0,0,1,0] => 1 [1,1,1,0,0,1,0,0] => 2 [1,1,1,0,1,0,0,0] => 2 [1,1,1,1,0,0,0,0] => 1 [1,0,1,0,1,0,1,0,1,0] => 0 [1,0,1,0,1,0,1,1,0,0] => 1 [1,0,1,0,1,1,0,0,1,0] => 0 [1,0,1,0,1,1,0,1,0,0] => 4 [1,0,1,0,1,1,1,0,0,0] => 1 [1,0,1,1,0,0,1,0,1,0] => 0 [1,0,1,1,0,0,1,1,0,0] => 1 [1,0,1,1,0,1,0,0,1,0] => 3 [1,0,1,1,0,1,0,1,0,0] => 0 [1,0,1,1,0,1,1,0,0,0] => 3 [1,0,1,1,1,0,0,0,1,0] => 1 [1,0,1,1,1,0,0,1,0,0] => 2 [1,0,1,1,1,0,1,0,0,0] => 3 [1,0,1,1,1,1,0,0,0,0] => 1 [1,1,0,0,1,0,1,0,1,0] => 1 [1,1,0,0,1,0,1,1,0,0] => 1 [1,1,0,0,1,1,0,0,1,0] => 1 [1,1,0,0,1,1,0,1,0,0] => 3 [1,1,0,0,1,1,1,0,0,0] => 1 [1,1,0,1,0,0,1,0,1,0] => 2 [1,1,0,1,0,0,1,1,0,0] => 2 [1,1,0,1,0,1,0,0,1,0] => 0 [1,1,0,1,0,1,0,1,0,0] => 0 [1,1,0,1,0,1,1,0,0,0] => 1 [1,1,0,1,1,0,0,0,1,0] => 2 [1,1,0,1,1,0,0,1,0,0] => 3 [1,1,0,1,1,0,1,0,0,0] => 3 [1,1,0,1,1,1,0,0,0,0] => 2 [1,1,1,0,0,0,1,0,1,0] => 1 [1,1,1,0,0,0,1,1,0,0] => 1 [1,1,1,0,0,1,0,0,1,0] => 2 [1,1,1,0,0,1,0,1,0,0] => 1 [1,1,1,0,0,1,1,0,0,0] => 2 [1,1,1,0,1,0,0,0,1,0] => 2 [1,1,1,0,1,0,0,1,0,0] => 2 [1,1,1,0,1,0,1,0,0,0] => 2 [1,1,1,0,1,1,0,0,0,0] => 2 [1,1,1,1,0,0,0,0,1,0] => 1 [1,1,1,1,0,0,0,1,0,0] => 2 [1,1,1,1,0,0,1,0,0,0] => 2 [1,1,1,1,0,1,0,0,0,0] => 2 [1,1,1,1,1,0,0,0,0,0] => 1 [1,0,1,0,1,0,1,0,1,0,1,0] => 0 [1,0,1,0,1,0,1,0,1,1,0,0] => 1 [1,0,1,0,1,0,1,1,0,0,1,0] => 0 [1,0,1,0,1,0,1,1,0,1,0,0] => 5 [1,0,1,0,1,0,1,1,1,0,0,0] => 1 [1,0,1,0,1,1,0,0,1,0,1,0] => 0 [1,0,1,0,1,1,0,0,1,1,0,0] => 1 [1,0,1,0,1,1,0,1,0,0,1,0] => 4 [1,0,1,0,1,1,0,1,0,1,0,0] => 0 [1,0,1,0,1,1,0,1,1,0,0,0] => 4 [1,0,1,0,1,1,1,0,0,0,1,0] => 1 [1,0,1,0,1,1,1,0,0,1,0,0] => 2 [1,0,1,0,1,1,1,0,1,0,0,0] => 4 [1,0,1,0,1,1,1,1,0,0,0,0] => 1 [1,0,1,1,0,0,1,0,1,0,1,0] => 0 [1,0,1,1,0,0,1,0,1,1,0,0] => 1 [1,0,1,1,0,0,1,1,0,0,1,0] => 0 [1,0,1,1,0,0,1,1,0,1,0,0] => 3 [1,0,1,1,0,0,1,1,1,0,0,0] => 1 [1,0,1,1,0,1,0,0,1,0,1,0] => 3 [1,0,1,1,0,1,0,0,1,1,0,0] => 3 [1,0,1,1,0,1,0,1,0,0,1,0] => 0 [1,0,1,1,0,1,0,1,0,1,0,0] => 0 [1,0,1,1,0,1,0,1,1,0,0,0] => 1 [1,0,1,1,0,1,1,0,0,0,1,0] => 3 [1,0,1,1,0,1,1,0,0,1,0,0] => 4 [1,0,1,1,0,1,1,0,1,0,0,0] => 4 [1,0,1,1,0,1,1,1,0,0,0,0] => 3 [1,0,1,1,1,0,0,0,1,0,1,0] => 1 [1,0,1,1,1,0,0,0,1,1,0,0] => 1 [1,0,1,1,1,0,0,1,0,0,1,0] => 2 [1,0,1,1,1,0,0,1,0,1,0,0] => 0 [1,0,1,1,1,0,0,1,1,0,0,0] => 2 [1,0,1,1,1,0,1,0,0,0,1,0] => 3 [1,0,1,1,1,0,1,0,0,1,0,0] => 3 [1,0,1,1,1,0,1,0,1,0,0,0] => 2 [1,0,1,1,1,0,1,1,0,0,0,0] => 3 [1,0,1,1,1,1,0,0,0,0,1,0] => 1 [1,0,1,1,1,1,0,0,0,1,0,0] => 2 [1,0,1,1,1,1,0,0,1,0,0,0] => 2 [1,0,1,1,1,1,0,1,0,0,0,0] => 3 [1,0,1,1,1,1,1,0,0,0,0,0] => 1 [1,1,0,0,1,0,1,0,1,0,1,0] => 1 [1,1,0,0,1,0,1,0,1,1,0,0] => 1 [1,1,0,0,1,0,1,1,0,0,1,0] => 1 [1,1,0,0,1,0,1,1,0,1,0,0] => 4 [1,1,0,0,1,0,1,1,1,0,0,0] => 1 [1,1,0,0,1,1,0,0,1,0,1,0] => 1 [1,1,0,0,1,1,0,0,1,1,0,0] => 1 [1,1,0,0,1,1,0,1,0,0,1,0] => 3 [1,1,0,0,1,1,0,1,0,1,0,0] => 1 [1,1,0,0,1,1,0,1,1,0,0,0] => 3 [1,1,0,0,1,1,1,0,0,0,1,0] => 1 [1,1,0,0,1,1,1,0,0,1,0,0] => 2 [1,1,0,0,1,1,1,0,1,0,0,0] => 3 [1,1,0,0,1,1,1,1,0,0,0,0] => 1 [1,1,0,1,0,0,1,0,1,0,1,0] => 2 [1,1,0,1,0,0,1,0,1,1,0,0] => 2 [1,1,0,1,0,0,1,1,0,0,1,0] => 2 [1,1,0,1,0,0,1,1,0,1,0,0] => 4 [1,1,0,1,0,0,1,1,1,0,0,0] => 2 [1,1,0,1,0,1,0,0,1,0,1,0] => 0 [1,1,0,1,0,1,0,0,1,1,0,0] => 1 [1,1,0,1,0,1,0,1,0,0,1,0] => 0 [1,1,0,1,0,1,0,1,0,1,0,0] => 0 [1,1,0,1,0,1,0,1,1,0,0,0] => 1 [1,1,0,1,0,1,1,0,0,0,1,0] => 0 [1,1,0,1,0,1,1,0,0,1,0,0] => 4 [1,1,0,1,0,1,1,0,1,0,0,0] => 3 [1,1,0,1,0,1,1,1,0,0,0,0] => 1 [1,1,0,1,1,0,0,0,1,0,1,0] => 2 [1,1,0,1,1,0,0,0,1,1,0,0] => 2 [1,1,0,1,1,0,0,1,0,0,1,0] => 3 [1,1,0,1,1,0,0,1,0,1,0,0] => 2 [1,1,0,1,1,0,0,1,1,0,0,0] => 3 [1,1,0,1,1,0,1,0,0,0,1,0] => 3 [1,1,0,1,1,0,1,0,0,1,0,0] => 0 [1,1,0,1,1,0,1,0,1,0,0,0] => 3 [1,1,0,1,1,0,1,1,0,0,0,0] => 3 [1,1,0,1,1,1,0,0,0,0,1,0] => 2 [1,1,0,1,1,1,0,0,0,1,0,0] => 2 [1,1,0,1,1,1,0,0,1,0,0,0] => 3 [1,1,0,1,1,1,0,1,0,0,0,0] => 3 [1,1,0,1,1,1,1,0,0,0,0,0] => 2 [1,1,1,0,0,0,1,0,1,0,1,0] => 1 [1,1,1,0,0,0,1,0,1,1,0,0] => 1 [1,1,1,0,0,0,1,1,0,0,1,0] => 1 [1,1,1,0,0,0,1,1,0,1,0,0] => 3 [1,1,1,0,0,0,1,1,1,0,0,0] => 1 [1,1,1,0,0,1,0,0,1,0,1,0] => 2 [1,1,1,0,0,1,0,0,1,1,0,0] => 2 [1,1,1,0,0,1,0,1,0,0,1,0] => 1 [1,1,1,0,0,1,0,1,0,1,0,0] => 1 [1,1,1,0,0,1,0,1,1,0,0,0] => 1 [1,1,1,0,0,1,1,0,0,0,1,0] => 2 [1,1,1,0,0,1,1,0,0,1,0,0] => 3 [1,1,1,0,0,1,1,0,1,0,0,0] => 3 [1,1,1,0,0,1,1,1,0,0,0,0] => 2 [1,1,1,0,1,0,0,0,1,0,1,0] => 2 [1,1,1,0,1,0,0,0,1,1,0,0] => 2 [1,1,1,0,1,0,0,1,0,0,1,0] => 2 [1,1,1,0,1,0,0,1,0,1,0,0] => 2 [1,1,1,0,1,0,0,1,1,0,0,0] => 2 [1,1,1,0,1,0,1,0,0,0,1,0] => 2 [1,1,1,0,1,0,1,0,0,1,0,0] => 2 [1,1,1,0,1,0,1,0,1,0,0,0] => 0 [1,1,1,0,1,0,1,1,0,0,0,0] => 2 [1,1,1,0,1,1,0,0,0,0,1,0] => 2 [1,1,1,0,1,1,0,0,0,1,0,0] => 3 [1,1,1,0,1,1,0,0,1,0,0,0] => 3 [1,1,1,0,1,1,0,1,0,0,0,0] => 3 [1,1,1,0,1,1,1,0,0,0,0,0] => 2 [1,1,1,1,0,0,0,0,1,0,1,0] => 1 [1,1,1,1,0,0,0,0,1,1,0,0] => 1 [1,1,1,1,0,0,0,1,0,0,1,0] => 2 [1,1,1,1,0,0,0,1,0,1,0,0] => 1 [1,1,1,1,0,0,0,1,1,0,0,0] => 2 [1,1,1,1,0,0,1,0,0,0,1,0] => 2 [1,1,1,1,0,0,1,0,0,1,0,0] => 2 [1,1,1,1,0,0,1,0,1,0,0,0] => 2 [1,1,1,1,0,0,1,1,0,0,0,0] => 2 [1,1,1,1,0,1,0,0,0,0,1,0] => 2 [1,1,1,1,0,1,0,0,0,1,0,0] => 2 [1,1,1,1,0,1,0,0,1,0,0,0] => 2 [1,1,1,1,0,1,0,1,0,0,0,0] => 2 [1,1,1,1,0,1,1,0,0,0,0,0] => 2 [1,1,1,1,1,0,0,0,0,0,1,0] => 1 [1,1,1,1,1,0,0,0,0,1,0,0] => 2 [1,1,1,1,1,0,0,0,1,0,0,0] => 2 [1,1,1,1,1,0,0,1,0,0,0,0] => 2 [1,1,1,1,1,0,1,0,0,0,0,0] => 2 [1,1,1,1,1,1,0,0,0,0,0,0] => 1 ----------------------------------------------------------------------------- Created: Oct 16, 2018 at 22:18 by Rene Marczinzik ----------------------------------------------------------------------------- Last Updated: Oct 16, 2018 at 22:18 by Rene Marczinzik