***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St000719 ----------------------------------------------------------------------------- Collection: Perfect matchings ----------------------------------------------------------------------------- Description: The number of alignments in a perfect matching. An alignment is a pair of edges \$(i,j)\$, \$(k,l)\$ such that \$i < j < k < l\$. Since any two edges in a perfect matching are either nesting ([[St000041]]), crossing ([[St000042]]) or form an alignment, the sum of these numbers in a perfect matching with \$n\$ edges is \$\binom{n}{2}\$. ----------------------------------------------------------------------------- References: [1] Kasraoui, A., Zeng, J. Distribution of crossings, nestings and alignments of two edges in matchings and partitions [[MathSciNet:2212506]] ----------------------------------------------------------------------------- Code: def statistic(m): res = 0 l = sorted(m, key=min) for i in range(len(l)): for j in range(i+1, len(l)): if max(l[i]) < min(l[j]): res += 1 return res ----------------------------------------------------------------------------- Statistic values: [(1,2)] => 0 [(1,2),(3,4)] => 1 [(1,3),(2,4)] => 0 [(1,4),(2,3)] => 0 [(1,2),(3,4),(5,6)] => 3 [(1,2),(3,5),(4,6)] => 2 [(1,2),(3,6),(4,5)] => 2 [(1,3),(2,4),(5,6)] => 2 [(1,3),(2,5),(4,6)] => 1 [(1,3),(2,6),(4,5)] => 1 [(1,4),(2,3),(5,6)] => 2 [(1,4),(2,5),(3,6)] => 0 [(1,4),(2,6),(3,5)] => 0 [(1,5),(2,3),(4,6)] => 1 [(1,5),(2,4),(3,6)] => 0 [(1,5),(2,6),(3,4)] => 0 [(1,6),(2,3),(4,5)] => 1 [(1,6),(2,4),(3,5)] => 0 [(1,6),(2,5),(3,4)] => 0 [(1,2),(3,4),(5,8),(6,7)] => 5 [(1,2),(3,4),(5,7),(6,8)] => 5 [(1,2),(3,4),(5,6),(7,8)] => 6 [(1,2),(3,5),(4,8),(6,7)] => 4 [(1,2),(3,5),(4,7),(6,8)] => 4 [(1,2),(3,5),(4,6),(7,8)] => 5 [(1,2),(3,6),(4,8),(5,7)] => 3 [(1,2),(3,6),(4,7),(5,8)] => 3 [(1,2),(3,6),(4,5),(7,8)] => 5 [(1,2),(3,7),(4,8),(5,6)] => 3 [(1,2),(3,7),(4,6),(5,8)] => 3 [(1,2),(3,7),(4,5),(6,8)] => 4 [(1,2),(3,8),(4,5),(6,7)] => 4 [(1,2),(3,8),(4,6),(5,7)] => 3 [(1,2),(3,8),(4,7),(5,6)] => 3 [(1,3),(2,4),(5,8),(6,7)] => 4 [(1,3),(2,4),(5,7),(6,8)] => 4 [(1,3),(2,4),(5,6),(7,8)] => 5 [(1,3),(2,5),(4,8),(6,7)] => 3 [(1,3),(2,5),(4,7),(6,8)] => 3 [(1,3),(2,5),(4,6),(7,8)] => 4 [(1,3),(2,6),(4,8),(5,7)] => 2 [(1,3),(2,6),(4,7),(5,8)] => 2 [(1,3),(2,6),(4,5),(7,8)] => 4 [(1,3),(2,7),(4,8),(5,6)] => 2 [(1,3),(2,7),(4,6),(5,8)] => 2 [(1,3),(2,7),(4,5),(6,8)] => 3 [(1,3),(2,8),(4,5),(6,7)] => 3 [(1,3),(2,8),(4,6),(5,7)] => 2 [(1,3),(2,8),(4,7),(5,6)] => 2 [(1,4),(2,3),(5,8),(6,7)] => 4 [(1,4),(2,3),(5,7),(6,8)] => 4 [(1,4),(2,3),(5,6),(7,8)] => 5 [(1,4),(2,5),(3,8),(6,7)] => 2 [(1,4),(2,5),(3,7),(6,8)] => 2 [(1,4),(2,5),(3,6),(7,8)] => 3 [(1,4),(2,6),(3,8),(5,7)] => 1 [(1,4),(2,6),(3,7),(5,8)] => 1 [(1,4),(2,6),(3,5),(7,8)] => 3 [(1,4),(2,7),(3,8),(5,6)] => 1 [(1,4),(2,7),(3,6),(5,8)] => 1 [(1,4),(2,7),(3,5),(6,8)] => 2 [(1,4),(2,8),(3,5),(6,7)] => 2 [(1,4),(2,8),(3,6),(5,7)] => 1 [(1,4),(2,8),(3,7),(5,6)] => 1 [(1,5),(2,3),(4,8),(6,7)] => 3 [(1,5),(2,3),(4,7),(6,8)] => 3 [(1,5),(2,3),(4,6),(7,8)] => 4 [(1,5),(2,4),(3,8),(6,7)] => 2 [(1,5),(2,4),(3,7),(6,8)] => 2 [(1,5),(2,4),(3,6),(7,8)] => 3 [(1,5),(2,6),(3,8),(4,7)] => 0 [(1,5),(2,6),(3,7),(4,8)] => 0 [(1,5),(2,6),(3,4),(7,8)] => 3 [(1,5),(2,7),(3,8),(4,6)] => 0 [(1,5),(2,7),(3,6),(4,8)] => 0 [(1,5),(2,7),(3,4),(6,8)] => 2 [(1,5),(2,8),(3,4),(6,7)] => 2 [(1,5),(2,8),(3,6),(4,7)] => 0 [(1,5),(2,8),(3,7),(4,6)] => 0 [(1,6),(2,3),(4,8),(5,7)] => 2 [(1,6),(2,3),(4,7),(5,8)] => 2 [(1,6),(2,3),(4,5),(7,8)] => 4 [(1,6),(2,4),(3,8),(5,7)] => 1 [(1,6),(2,4),(3,7),(5,8)] => 1 [(1,6),(2,4),(3,5),(7,8)] => 3 [(1,6),(2,5),(3,8),(4,7)] => 0 [(1,6),(2,5),(3,7),(4,8)] => 0 [(1,6),(2,5),(3,4),(7,8)] => 3 [(1,6),(2,7),(3,8),(4,5)] => 0 [(1,6),(2,7),(3,5),(4,8)] => 0 [(1,6),(2,7),(3,4),(5,8)] => 1 [(1,6),(2,8),(3,4),(5,7)] => 1 [(1,6),(2,8),(3,5),(4,7)] => 0 [(1,6),(2,8),(3,7),(4,5)] => 0 [(1,7),(2,3),(4,8),(5,6)] => 2 [(1,7),(2,3),(4,6),(5,8)] => 2 [(1,7),(2,3),(4,5),(6,8)] => 3 [(1,7),(2,4),(3,8),(5,6)] => 1 [(1,7),(2,4),(3,6),(5,8)] => 1 [(1,7),(2,4),(3,5),(6,8)] => 2 [(1,7),(2,5),(3,8),(4,6)] => 0 [(1,7),(2,5),(3,6),(4,8)] => 0 [(1,7),(2,5),(3,4),(6,8)] => 2 [(1,7),(2,6),(3,8),(4,5)] => 0 [(1,7),(2,6),(3,5),(4,8)] => 0 [(1,7),(2,6),(3,4),(5,8)] => 1 [(1,7),(2,8),(3,4),(5,6)] => 1 [(1,7),(2,8),(3,5),(4,6)] => 0 [(1,7),(2,8),(3,6),(4,5)] => 0 [(1,8),(2,3),(4,5),(6,7)] => 3 [(1,8),(2,3),(4,6),(5,7)] => 2 [(1,8),(2,3),(4,7),(5,6)] => 2 [(1,8),(2,4),(3,5),(6,7)] => 2 [(1,8),(2,4),(3,6),(5,7)] => 1 [(1,8),(2,4),(3,7),(5,6)] => 1 [(1,8),(2,5),(3,4),(6,7)] => 2 [(1,8),(2,5),(3,6),(4,7)] => 0 [(1,8),(2,5),(3,7),(4,6)] => 0 [(1,8),(2,6),(3,4),(5,7)] => 1 [(1,8),(2,6),(3,5),(4,7)] => 0 [(1,8),(2,6),(3,7),(4,5)] => 0 [(1,8),(2,7),(3,4),(5,6)] => 1 [(1,8),(2,7),(3,5),(4,6)] => 0 [(1,8),(2,7),(3,6),(4,5)] => 0 [(1,2),(3,4),(5,6),(7,10),(8,9)] => 9 [(1,2),(3,4),(5,6),(7,9),(8,10)] => 9 [(1,2),(3,4),(5,6),(7,8),(9,10)] => 10 [(1,2),(3,4),(5,7),(6,10),(8,9)] => 8 [(1,2),(3,4),(5,7),(6,9),(8,10)] => 8 [(1,2),(3,4),(5,7),(6,8),(9,10)] => 9 [(1,2),(3,4),(5,8),(6,7),(9,10)] => 9 [(1,2),(3,4),(5,8),(6,9),(7,10)] => 7 [(1,2),(3,4),(5,8),(6,10),(7,9)] => 7 [(1,2),(3,4),(5,9),(6,7),(8,10)] => 8 [(1,2),(3,4),(5,9),(6,8),(7,10)] => 7 [(1,2),(3,4),(5,9),(6,10),(7,8)] => 7 [(1,2),(3,4),(5,10),(6,7),(8,9)] => 8 [(1,2),(3,4),(5,10),(6,8),(7,9)] => 7 [(1,2),(3,4),(5,10),(6,9),(7,8)] => 7 [(1,2),(3,5),(4,6),(7,10),(8,9)] => 8 [(1,2),(3,5),(4,6),(7,9),(8,10)] => 8 [(1,2),(3,5),(4,6),(7,8),(9,10)] => 9 [(1,2),(3,5),(4,7),(6,10),(8,9)] => 7 [(1,2),(3,5),(4,7),(6,9),(8,10)] => 7 [(1,2),(3,5),(4,7),(6,8),(9,10)] => 8 [(1,2),(3,5),(4,8),(6,7),(9,10)] => 8 [(1,2),(3,5),(4,8),(6,9),(7,10)] => 6 [(1,2),(3,5),(4,8),(6,10),(7,9)] => 6 [(1,2),(3,5),(4,9),(6,7),(8,10)] => 7 [(1,2),(3,5),(4,9),(6,8),(7,10)] => 6 [(1,2),(3,5),(4,9),(6,10),(7,8)] => 6 [(1,2),(3,5),(4,10),(6,7),(8,9)] => 7 [(1,2),(3,5),(4,10),(6,8),(7,9)] => 6 [(1,2),(3,5),(4,10),(6,9),(7,8)] => 6 [(1,2),(3,6),(4,5),(7,10),(8,9)] => 8 [(1,2),(3,6),(4,5),(7,9),(8,10)] => 8 [(1,2),(3,6),(4,5),(7,8),(9,10)] => 9 [(1,2),(3,6),(4,7),(5,10),(8,9)] => 6 [(1,2),(3,6),(4,7),(5,9),(8,10)] => 6 [(1,2),(3,6),(4,7),(5,8),(9,10)] => 7 [(1,2),(3,6),(4,8),(5,7),(9,10)] => 7 [(1,2),(3,6),(4,8),(5,9),(7,10)] => 5 [(1,2),(3,6),(4,8),(5,10),(7,9)] => 5 [(1,2),(3,6),(4,9),(5,7),(8,10)] => 6 [(1,2),(3,6),(4,9),(5,8),(7,10)] => 5 [(1,2),(3,6),(4,9),(5,10),(7,8)] => 5 [(1,2),(3,6),(4,10),(5,7),(8,9)] => 6 [(1,2),(3,6),(4,10),(5,8),(7,9)] => 5 [(1,2),(3,6),(4,10),(5,9),(7,8)] => 5 [(1,2),(3,7),(4,5),(6,10),(8,9)] => 7 [(1,2),(3,7),(4,5),(6,9),(8,10)] => 7 [(1,2),(3,7),(4,5),(6,8),(9,10)] => 8 [(1,2),(3,7),(4,6),(5,10),(8,9)] => 6 [(1,2),(3,7),(4,6),(5,9),(8,10)] => 6 [(1,2),(3,7),(4,6),(5,8),(9,10)] => 7 [(1,2),(3,7),(4,8),(5,6),(9,10)] => 7 [(1,2),(3,7),(4,8),(5,9),(6,10)] => 4 [(1,2),(3,7),(4,8),(5,10),(6,9)] => 4 [(1,2),(3,7),(4,9),(5,6),(8,10)] => 6 [(1,2),(3,7),(4,9),(5,8),(6,10)] => 4 [(1,2),(3,7),(4,9),(5,10),(6,8)] => 4 [(1,2),(3,7),(4,10),(5,6),(8,9)] => 6 [(1,2),(3,7),(4,10),(5,8),(6,9)] => 4 [(1,2),(3,7),(4,10),(5,9),(6,8)] => 4 [(1,2),(3,8),(4,5),(6,7),(9,10)] => 8 [(1,2),(3,8),(4,5),(6,9),(7,10)] => 6 [(1,2),(3,8),(4,5),(6,10),(7,9)] => 6 [(1,2),(3,8),(4,6),(5,7),(9,10)] => 7 [(1,2),(3,8),(4,6),(5,9),(7,10)] => 5 [(1,2),(3,8),(4,6),(5,10),(7,9)] => 5 [(1,2),(3,8),(4,7),(5,6),(9,10)] => 7 [(1,2),(3,8),(4,7),(5,9),(6,10)] => 4 [(1,2),(3,8),(4,7),(5,10),(6,9)] => 4 [(1,2),(3,8),(4,9),(5,10),(6,7)] => 4 [(1,2),(3,8),(4,9),(5,7),(6,10)] => 4 [(1,2),(3,8),(4,9),(5,6),(7,10)] => 5 [(1,2),(3,8),(4,10),(5,9),(6,7)] => 4 [(1,2),(3,8),(4,10),(5,7),(6,9)] => 4 [(1,2),(3,8),(4,10),(5,6),(7,9)] => 5 [(1,2),(3,9),(4,5),(6,7),(8,10)] => 7 [(1,2),(3,9),(4,5),(6,8),(7,10)] => 6 [(1,2),(3,9),(4,5),(6,10),(7,8)] => 6 [(1,2),(3,9),(4,6),(5,7),(8,10)] => 6 [(1,2),(3,9),(4,6),(5,8),(7,10)] => 5 [(1,2),(3,9),(4,6),(5,10),(7,8)] => 5 [(1,2),(3,9),(4,7),(5,6),(8,10)] => 6 [(1,2),(3,9),(4,7),(5,8),(6,10)] => 4 [(1,2),(3,9),(4,7),(5,10),(6,8)] => 4 [(1,2),(3,9),(4,8),(5,10),(6,7)] => 4 [(1,2),(3,9),(4,8),(5,7),(6,10)] => 4 [(1,2),(3,9),(4,8),(5,6),(7,10)] => 5 [(1,2),(3,9),(4,10),(5,8),(6,7)] => 4 [(1,2),(3,9),(4,10),(5,7),(6,8)] => 4 [(1,2),(3,9),(4,10),(5,6),(7,8)] => 5 [(1,2),(3,10),(4,5),(6,7),(8,9)] => 7 [(1,2),(3,10),(4,5),(6,8),(7,9)] => 6 [(1,2),(3,10),(4,5),(6,9),(7,8)] => 6 [(1,2),(3,10),(4,6),(5,7),(8,9)] => 6 [(1,2),(3,10),(4,6),(5,8),(7,9)] => 5 [(1,2),(3,10),(4,6),(5,9),(7,8)] => 5 [(1,2),(3,10),(4,7),(5,6),(8,9)] => 6 [(1,2),(3,10),(4,7),(5,8),(6,9)] => 4 [(1,2),(3,10),(4,7),(5,9),(6,8)] => 4 [(1,2),(3,10),(4,8),(5,9),(6,7)] => 4 [(1,2),(3,10),(4,8),(5,7),(6,9)] => 4 [(1,2),(3,10),(4,8),(5,6),(7,9)] => 5 [(1,2),(3,10),(4,9),(5,8),(6,7)] => 4 [(1,2),(3,10),(4,9),(5,7),(6,8)] => 4 [(1,2),(3,10),(4,9),(5,6),(7,8)] => 5 [(1,3),(2,4),(5,6),(7,10),(8,9)] => 8 [(1,3),(2,4),(5,6),(7,9),(8,10)] => 8 [(1,3),(2,4),(5,6),(7,8),(9,10)] => 9 [(1,3),(2,4),(5,7),(6,10),(8,9)] => 7 [(1,3),(2,4),(5,7),(6,9),(8,10)] => 7 [(1,3),(2,4),(5,7),(6,8),(9,10)] => 8 [(1,3),(2,4),(5,8),(6,7),(9,10)] => 8 [(1,3),(2,4),(5,8),(6,9),(7,10)] => 6 [(1,3),(2,4),(5,8),(6,10),(7,9)] => 6 [(1,3),(2,4),(5,9),(6,7),(8,10)] => 7 [(1,3),(2,4),(5,9),(6,8),(7,10)] => 6 [(1,3),(2,4),(5,9),(6,10),(7,8)] => 6 [(1,3),(2,4),(5,10),(6,7),(8,9)] => 7 [(1,3),(2,4),(5,10),(6,8),(7,9)] => 6 [(1,3),(2,4),(5,10),(6,9),(7,8)] => 6 [(1,3),(2,5),(4,6),(7,10),(8,9)] => 7 [(1,3),(2,5),(4,6),(7,9),(8,10)] => 7 [(1,3),(2,5),(4,6),(7,8),(9,10)] => 8 [(1,3),(2,5),(4,7),(6,10),(8,9)] => 6 [(1,3),(2,5),(4,7),(6,9),(8,10)] => 6 [(1,3),(2,5),(4,7),(6,8),(9,10)] => 7 [(1,3),(2,5),(4,8),(6,7),(9,10)] => 7 [(1,3),(2,5),(4,8),(6,9),(7,10)] => 5 [(1,3),(2,5),(4,8),(6,10),(7,9)] => 5 [(1,3),(2,5),(4,9),(6,7),(8,10)] => 6 [(1,3),(2,5),(4,9),(6,8),(7,10)] => 5 [(1,3),(2,5),(4,9),(6,10),(7,8)] => 5 [(1,3),(2,5),(4,10),(6,7),(8,9)] => 6 [(1,3),(2,5),(4,10),(6,8),(7,9)] => 5 [(1,3),(2,5),(4,10),(6,9),(7,8)] => 5 [(1,3),(2,6),(4,5),(7,10),(8,9)] => 7 [(1,3),(2,6),(4,5),(7,9),(8,10)] => 7 [(1,3),(2,6),(4,5),(7,8),(9,10)] => 8 [(1,3),(2,6),(4,7),(5,10),(8,9)] => 5 [(1,3),(2,6),(4,7),(5,9),(8,10)] => 5 [(1,3),(2,6),(4,7),(5,8),(9,10)] => 6 [(1,3),(2,6),(4,8),(5,7),(9,10)] => 6 [(1,3),(2,6),(4,8),(5,9),(7,10)] => 4 [(1,3),(2,6),(4,8),(5,10),(7,9)] => 4 [(1,3),(2,6),(4,9),(5,7),(8,10)] => 5 [(1,3),(2,6),(4,9),(5,8),(7,10)] => 4 [(1,3),(2,6),(4,9),(5,10),(7,8)] => 4 [(1,3),(2,6),(4,10),(5,7),(8,9)] => 5 [(1,3),(2,6),(4,10),(5,8),(7,9)] => 4 [(1,3),(2,6),(4,10),(5,9),(7,8)] => 4 [(1,3),(2,7),(4,5),(6,10),(8,9)] => 6 [(1,3),(2,7),(4,5),(6,9),(8,10)] => 6 [(1,3),(2,7),(4,5),(6,8),(9,10)] => 7 [(1,3),(2,7),(4,6),(5,10),(8,9)] => 5 [(1,3),(2,7),(4,6),(5,9),(8,10)] => 5 [(1,3),(2,7),(4,6),(5,8),(9,10)] => 6 [(1,3),(2,7),(4,8),(5,6),(9,10)] => 6 [(1,3),(2,7),(4,8),(5,9),(6,10)] => 3 [(1,3),(2,7),(4,8),(5,10),(6,9)] => 3 [(1,3),(2,7),(4,9),(5,6),(8,10)] => 5 [(1,3),(2,7),(4,9),(5,8),(6,10)] => 3 [(1,3),(2,7),(4,9),(5,10),(6,8)] => 3 [(1,3),(2,7),(4,10),(5,6),(8,9)] => 5 [(1,3),(2,7),(4,10),(5,8),(6,9)] => 3 [(1,3),(2,7),(4,10),(5,9),(6,8)] => 3 [(1,3),(2,8),(4,5),(6,7),(9,10)] => 7 [(1,3),(2,8),(4,5),(6,9),(7,10)] => 5 [(1,3),(2,8),(4,5),(6,10),(7,9)] => 5 [(1,3),(2,8),(4,6),(5,7),(9,10)] => 6 [(1,3),(2,8),(4,6),(5,9),(7,10)] => 4 [(1,3),(2,8),(4,6),(5,10),(7,9)] => 4 [(1,3),(2,8),(4,7),(5,6),(9,10)] => 6 [(1,3),(2,8),(4,7),(5,9),(6,10)] => 3 [(1,3),(2,8),(4,7),(5,10),(6,9)] => 3 [(1,3),(2,8),(4,9),(5,10),(6,7)] => 3 [(1,3),(2,8),(4,9),(5,7),(6,10)] => 3 [(1,3),(2,8),(4,9),(5,6),(7,10)] => 4 [(1,3),(2,8),(4,10),(5,9),(6,7)] => 3 [(1,3),(2,8),(4,10),(5,7),(6,9)] => 3 [(1,3),(2,8),(4,10),(5,6),(7,9)] => 4 [(1,3),(2,9),(4,5),(6,7),(8,10)] => 6 [(1,3),(2,9),(4,5),(6,8),(7,10)] => 5 [(1,3),(2,9),(4,5),(6,10),(7,8)] => 5 [(1,3),(2,9),(4,6),(5,7),(8,10)] => 5 [(1,3),(2,9),(4,6),(5,8),(7,10)] => 4 [(1,3),(2,9),(4,6),(5,10),(7,8)] => 4 [(1,3),(2,9),(4,7),(5,6),(8,10)] => 5 [(1,3),(2,9),(4,7),(5,8),(6,10)] => 3 [(1,3),(2,9),(4,7),(5,10),(6,8)] => 3 [(1,3),(2,9),(4,8),(5,10),(6,7)] => 3 [(1,3),(2,9),(4,8),(5,7),(6,10)] => 3 [(1,3),(2,9),(4,8),(5,6),(7,10)] => 4 [(1,3),(2,9),(4,10),(5,8),(6,7)] => 3 [(1,3),(2,9),(4,10),(5,7),(6,8)] => 3 [(1,3),(2,9),(4,10),(5,6),(7,8)] => 4 [(1,3),(2,10),(4,5),(6,7),(8,9)] => 6 [(1,3),(2,10),(4,5),(6,8),(7,9)] => 5 [(1,3),(2,10),(4,5),(6,9),(7,8)] => 5 [(1,3),(2,10),(4,6),(5,7),(8,9)] => 5 [(1,3),(2,10),(4,6),(5,8),(7,9)] => 4 [(1,3),(2,10),(4,6),(5,9),(7,8)] => 4 [(1,3),(2,10),(4,7),(5,6),(8,9)] => 5 [(1,3),(2,10),(4,7),(5,8),(6,9)] => 3 [(1,3),(2,10),(4,7),(5,9),(6,8)] => 3 [(1,3),(2,10),(4,8),(5,9),(6,7)] => 3 [(1,3),(2,10),(4,8),(5,7),(6,9)] => 3 [(1,3),(2,10),(4,8),(5,6),(7,9)] => 4 [(1,3),(2,10),(4,9),(5,8),(6,7)] => 3 [(1,3),(2,10),(4,9),(5,7),(6,8)] => 3 [(1,3),(2,10),(4,9),(5,6),(7,8)] => 4 [(1,4),(2,3),(5,6),(7,10),(8,9)] => 8 [(1,4),(2,3),(5,6),(7,9),(8,10)] => 8 [(1,4),(2,3),(5,6),(7,8),(9,10)] => 9 [(1,4),(2,3),(5,7),(6,10),(8,9)] => 7 [(1,4),(2,3),(5,7),(6,9),(8,10)] => 7 [(1,4),(2,3),(5,7),(6,8),(9,10)] => 8 [(1,4),(2,3),(5,8),(6,7),(9,10)] => 8 [(1,4),(2,3),(5,8),(6,9),(7,10)] => 6 [(1,4),(2,3),(5,8),(6,10),(7,9)] => 6 [(1,4),(2,3),(5,9),(6,7),(8,10)] => 7 [(1,4),(2,3),(5,9),(6,8),(7,10)] => 6 [(1,4),(2,3),(5,9),(6,10),(7,8)] => 6 [(1,4),(2,3),(5,10),(6,7),(8,9)] => 7 [(1,4),(2,3),(5,10),(6,8),(7,9)] => 6 [(1,4),(2,3),(5,10),(6,9),(7,8)] => 6 [(1,4),(2,5),(3,6),(7,10),(8,9)] => 6 [(1,4),(2,5),(3,6),(7,9),(8,10)] => 6 [(1,4),(2,5),(3,6),(7,8),(9,10)] => 7 [(1,4),(2,5),(3,7),(6,10),(8,9)] => 5 [(1,4),(2,5),(3,7),(6,9),(8,10)] => 5 [(1,4),(2,5),(3,7),(6,8),(9,10)] => 6 [(1,4),(2,5),(3,8),(6,7),(9,10)] => 6 [(1,4),(2,5),(3,8),(6,9),(7,10)] => 4 [(1,4),(2,5),(3,8),(6,10),(7,9)] => 4 [(1,4),(2,5),(3,9),(6,7),(8,10)] => 5 [(1,4),(2,5),(3,9),(6,8),(7,10)] => 4 [(1,4),(2,5),(3,9),(6,10),(7,8)] => 4 [(1,4),(2,5),(3,10),(6,7),(8,9)] => 5 [(1,4),(2,5),(3,10),(6,8),(7,9)] => 4 [(1,4),(2,5),(3,10),(6,9),(7,8)] => 4 [(1,4),(2,6),(3,5),(7,10),(8,9)] => 6 [(1,4),(2,6),(3,5),(7,9),(8,10)] => 6 [(1,4),(2,6),(3,5),(7,8),(9,10)] => 7 [(1,4),(2,6),(3,7),(5,10),(8,9)] => 4 [(1,4),(2,6),(3,7),(5,9),(8,10)] => 4 [(1,4),(2,6),(3,7),(5,8),(9,10)] => 5 [(1,4),(2,6),(3,8),(5,7),(9,10)] => 5 [(1,4),(2,6),(3,8),(5,9),(7,10)] => 3 [(1,4),(2,6),(3,8),(5,10),(7,9)] => 3 [(1,4),(2,6),(3,9),(5,7),(8,10)] => 4 [(1,4),(2,6),(3,9),(5,8),(7,10)] => 3 [(1,4),(2,6),(3,9),(5,10),(7,8)] => 3 [(1,4),(2,6),(3,10),(5,7),(8,9)] => 4 [(1,4),(2,6),(3,10),(5,8),(7,9)] => 3 [(1,4),(2,6),(3,10),(5,9),(7,8)] => 3 [(1,4),(2,7),(3,5),(6,10),(8,9)] => 5 [(1,4),(2,7),(3,5),(6,9),(8,10)] => 5 [(1,4),(2,7),(3,5),(6,8),(9,10)] => 6 [(1,4),(2,7),(3,6),(5,10),(8,9)] => 4 [(1,4),(2,7),(3,6),(5,9),(8,10)] => 4 [(1,4),(2,7),(3,6),(5,8),(9,10)] => 5 [(1,4),(2,7),(3,8),(5,6),(9,10)] => 5 [(1,4),(2,7),(3,8),(5,9),(6,10)] => 2 [(1,4),(2,7),(3,8),(5,10),(6,9)] => 2 [(1,4),(2,7),(3,9),(5,6),(8,10)] => 4 [(1,4),(2,7),(3,9),(5,8),(6,10)] => 2 [(1,4),(2,7),(3,9),(5,10),(6,8)] => 2 [(1,4),(2,7),(3,10),(5,6),(8,9)] => 4 [(1,4),(2,7),(3,10),(5,8),(6,9)] => 2 [(1,4),(2,7),(3,10),(5,9),(6,8)] => 2 [(1,4),(2,8),(3,5),(6,7),(9,10)] => 6 [(1,4),(2,8),(3,5),(6,9),(7,10)] => 4 [(1,4),(2,8),(3,5),(6,10),(7,9)] => 4 [(1,4),(2,8),(3,6),(5,7),(9,10)] => 5 [(1,4),(2,8),(3,6),(5,9),(7,10)] => 3 [(1,4),(2,8),(3,6),(5,10),(7,9)] => 3 [(1,4),(2,8),(3,7),(5,6),(9,10)] => 5 [(1,4),(2,8),(3,7),(5,9),(6,10)] => 2 [(1,4),(2,8),(3,7),(5,10),(6,9)] => 2 [(1,4),(2,8),(3,9),(5,10),(6,7)] => 2 [(1,4),(2,8),(3,9),(5,7),(6,10)] => 2 [(1,4),(2,8),(3,9),(5,6),(7,10)] => 3 [(1,4),(2,8),(3,10),(5,9),(6,7)] => 2 [(1,4),(2,8),(3,10),(5,7),(6,9)] => 2 [(1,4),(2,8),(3,10),(5,6),(7,9)] => 3 [(1,4),(2,9),(3,5),(6,7),(8,10)] => 5 [(1,4),(2,9),(3,5),(6,8),(7,10)] => 4 [(1,4),(2,9),(3,5),(6,10),(7,8)] => 4 [(1,4),(2,9),(3,6),(5,7),(8,10)] => 4 [(1,4),(2,9),(3,6),(5,8),(7,10)] => 3 [(1,4),(2,9),(3,6),(5,10),(7,8)] => 3 [(1,4),(2,9),(3,7),(5,6),(8,10)] => 4 [(1,4),(2,9),(3,7),(5,8),(6,10)] => 2 [(1,4),(2,9),(3,7),(5,10),(6,8)] => 2 [(1,4),(2,9),(3,8),(5,10),(6,7)] => 2 [(1,4),(2,9),(3,8),(5,7),(6,10)] => 2 [(1,4),(2,9),(3,8),(5,6),(7,10)] => 3 [(1,4),(2,9),(3,10),(5,8),(6,7)] => 2 [(1,4),(2,9),(3,10),(5,7),(6,8)] => 2 [(1,4),(2,9),(3,10),(5,6),(7,8)] => 3 [(1,4),(2,10),(3,5),(6,7),(8,9)] => 5 [(1,4),(2,10),(3,5),(6,8),(7,9)] => 4 [(1,4),(2,10),(3,5),(6,9),(7,8)] => 4 [(1,4),(2,10),(3,6),(5,7),(8,9)] => 4 [(1,4),(2,10),(3,6),(5,8),(7,9)] => 3 [(1,4),(2,10),(3,6),(5,9),(7,8)] => 3 [(1,4),(2,10),(3,7),(5,6),(8,9)] => 4 [(1,4),(2,10),(3,7),(5,8),(6,9)] => 2 [(1,4),(2,10),(3,7),(5,9),(6,8)] => 2 [(1,4),(2,10),(3,8),(5,9),(6,7)] => 2 [(1,4),(2,10),(3,8),(5,7),(6,9)] => 2 [(1,4),(2,10),(3,8),(5,6),(7,9)] => 3 [(1,4),(2,10),(3,9),(5,8),(6,7)] => 2 [(1,4),(2,10),(3,9),(5,7),(6,8)] => 2 [(1,4),(2,10),(3,9),(5,6),(7,8)] => 3 [(1,5),(2,3),(4,6),(7,10),(8,9)] => 7 [(1,5),(2,3),(4,6),(7,9),(8,10)] => 7 [(1,5),(2,3),(4,6),(7,8),(9,10)] => 8 [(1,5),(2,3),(4,7),(6,10),(8,9)] => 6 [(1,5),(2,3),(4,7),(6,9),(8,10)] => 6 [(1,5),(2,3),(4,7),(6,8),(9,10)] => 7 [(1,5),(2,3),(4,8),(6,7),(9,10)] => 7 [(1,5),(2,3),(4,8),(6,9),(7,10)] => 5 [(1,5),(2,3),(4,8),(6,10),(7,9)] => 5 [(1,5),(2,3),(4,9),(6,7),(8,10)] => 6 [(1,5),(2,3),(4,9),(6,8),(7,10)] => 5 [(1,5),(2,3),(4,9),(6,10),(7,8)] => 5 [(1,5),(2,3),(4,10),(6,7),(8,9)] => 6 [(1,5),(2,3),(4,10),(6,8),(7,9)] => 5 [(1,5),(2,3),(4,10),(6,9),(7,8)] => 5 [(1,5),(2,4),(3,6),(7,10),(8,9)] => 6 [(1,5),(2,4),(3,6),(7,9),(8,10)] => 6 [(1,5),(2,4),(3,6),(7,8),(9,10)] => 7 [(1,5),(2,4),(3,7),(6,10),(8,9)] => 5 [(1,5),(2,4),(3,7),(6,9),(8,10)] => 5 [(1,5),(2,4),(3,7),(6,8),(9,10)] => 6 [(1,5),(2,4),(3,8),(6,7),(9,10)] => 6 [(1,5),(2,4),(3,8),(6,9),(7,10)] => 4 [(1,5),(2,4),(3,8),(6,10),(7,9)] => 4 [(1,5),(2,4),(3,9),(6,7),(8,10)] => 5 [(1,5),(2,4),(3,9),(6,8),(7,10)] => 4 [(1,5),(2,4),(3,9),(6,10),(7,8)] => 4 [(1,5),(2,4),(3,10),(6,7),(8,9)] => 5 [(1,5),(2,4),(3,10),(6,8),(7,9)] => 4 [(1,5),(2,4),(3,10),(6,9),(7,8)] => 4 [(1,5),(2,6),(3,4),(7,10),(8,9)] => 6 [(1,5),(2,6),(3,4),(7,9),(8,10)] => 6 [(1,5),(2,6),(3,4),(7,8),(9,10)] => 7 [(1,5),(2,6),(3,7),(4,10),(8,9)] => 3 [(1,5),(2,6),(3,7),(4,9),(8,10)] => 3 [(1,5),(2,6),(3,7),(4,8),(9,10)] => 4 [(1,5),(2,6),(3,8),(4,7),(9,10)] => 4 [(1,5),(2,6),(3,8),(4,9),(7,10)] => 2 [(1,5),(2,6),(3,8),(4,10),(7,9)] => 2 [(1,5),(2,6),(3,9),(4,7),(8,10)] => 3 [(1,5),(2,6),(3,9),(4,8),(7,10)] => 2 [(1,5),(2,6),(3,9),(4,10),(7,8)] => 2 [(1,5),(2,6),(3,10),(4,7),(8,9)] => 3 [(1,5),(2,6),(3,10),(4,8),(7,9)] => 2 [(1,5),(2,6),(3,10),(4,9),(7,8)] => 2 [(1,5),(2,7),(3,4),(6,10),(8,9)] => 5 [(1,5),(2,7),(3,4),(6,9),(8,10)] => 5 [(1,5),(2,7),(3,4),(6,8),(9,10)] => 6 [(1,5),(2,7),(3,6),(4,10),(8,9)] => 3 [(1,5),(2,7),(3,6),(4,9),(8,10)] => 3 [(1,5),(2,7),(3,6),(4,8),(9,10)] => 4 [(1,5),(2,7),(3,8),(4,6),(9,10)] => 4 [(1,5),(2,7),(3,8),(4,9),(6,10)] => 1 [(1,5),(2,7),(3,8),(4,10),(6,9)] => 1 [(1,5),(2,7),(3,9),(4,6),(8,10)] => 3 [(1,5),(2,7),(3,9),(4,8),(6,10)] => 1 [(1,5),(2,7),(3,9),(4,10),(6,8)] => 1 [(1,5),(2,7),(3,10),(4,6),(8,9)] => 3 [(1,5),(2,7),(3,10),(4,8),(6,9)] => 1 [(1,5),(2,7),(3,10),(4,9),(6,8)] => 1 [(1,5),(2,8),(3,4),(6,7),(9,10)] => 6 [(1,5),(2,8),(3,4),(6,9),(7,10)] => 4 [(1,5),(2,8),(3,4),(6,10),(7,9)] => 4 [(1,5),(2,8),(3,6),(4,7),(9,10)] => 4 [(1,5),(2,8),(3,6),(4,9),(7,10)] => 2 [(1,5),(2,8),(3,6),(4,10),(7,9)] => 2 [(1,5),(2,8),(3,7),(4,6),(9,10)] => 4 [(1,5),(2,8),(3,7),(4,9),(6,10)] => 1 [(1,5),(2,8),(3,7),(4,10),(6,9)] => 1 [(1,5),(2,8),(3,9),(4,10),(6,7)] => 1 [(1,5),(2,8),(3,9),(4,7),(6,10)] => 1 [(1,5),(2,8),(3,9),(4,6),(7,10)] => 2 [(1,5),(2,8),(3,10),(4,9),(6,7)] => 1 [(1,5),(2,8),(3,10),(4,7),(6,9)] => 1 [(1,5),(2,8),(3,10),(4,6),(7,9)] => 2 [(1,5),(2,9),(3,4),(6,7),(8,10)] => 5 [(1,5),(2,9),(3,4),(6,8),(7,10)] => 4 [(1,5),(2,9),(3,4),(6,10),(7,8)] => 4 [(1,5),(2,9),(3,6),(4,7),(8,10)] => 3 [(1,5),(2,9),(3,6),(4,8),(7,10)] => 2 [(1,5),(2,9),(3,6),(4,10),(7,8)] => 2 [(1,5),(2,9),(3,7),(4,6),(8,10)] => 3 [(1,5),(2,9),(3,7),(4,8),(6,10)] => 1 [(1,5),(2,9),(3,7),(4,10),(6,8)] => 1 [(1,5),(2,9),(3,8),(4,10),(6,7)] => 1 [(1,5),(2,9),(3,8),(4,7),(6,10)] => 1 [(1,5),(2,9),(3,8),(4,6),(7,10)] => 2 [(1,5),(2,9),(3,10),(4,8),(6,7)] => 1 [(1,5),(2,9),(3,10),(4,7),(6,8)] => 1 [(1,5),(2,9),(3,10),(4,6),(7,8)] => 2 [(1,5),(2,10),(3,4),(6,7),(8,9)] => 5 [(1,5),(2,10),(3,4),(6,8),(7,9)] => 4 [(1,5),(2,10),(3,4),(6,9),(7,8)] => 4 [(1,5),(2,10),(3,6),(4,7),(8,9)] => 3 [(1,5),(2,10),(3,6),(4,8),(7,9)] => 2 [(1,5),(2,10),(3,6),(4,9),(7,8)] => 2 [(1,5),(2,10),(3,7),(4,6),(8,9)] => 3 [(1,5),(2,10),(3,7),(4,8),(6,9)] => 1 [(1,5),(2,10),(3,7),(4,9),(6,8)] => 1 [(1,5),(2,10),(3,8),(4,9),(6,7)] => 1 [(1,5),(2,10),(3,8),(4,7),(6,9)] => 1 [(1,5),(2,10),(3,8),(4,6),(7,9)] => 2 [(1,5),(2,10),(3,9),(4,8),(6,7)] => 1 [(1,5),(2,10),(3,9),(4,7),(6,8)] => 1 [(1,5),(2,10),(3,9),(4,6),(7,8)] => 2 [(1,6),(2,3),(4,5),(7,10),(8,9)] => 7 [(1,6),(2,3),(4,5),(7,9),(8,10)] => 7 [(1,6),(2,3),(4,5),(7,8),(9,10)] => 8 [(1,6),(2,3),(4,7),(5,10),(8,9)] => 5 [(1,6),(2,3),(4,7),(5,9),(8,10)] => 5 [(1,6),(2,3),(4,7),(5,8),(9,10)] => 6 [(1,6),(2,3),(4,8),(5,7),(9,10)] => 6 [(1,6),(2,3),(4,8),(5,9),(7,10)] => 4 [(1,6),(2,3),(4,8),(5,10),(7,9)] => 4 [(1,6),(2,3),(4,9),(5,7),(8,10)] => 5 [(1,6),(2,3),(4,9),(5,8),(7,10)] => 4 [(1,6),(2,3),(4,9),(5,10),(7,8)] => 4 [(1,6),(2,3),(4,10),(5,7),(8,9)] => 5 [(1,6),(2,3),(4,10),(5,8),(7,9)] => 4 [(1,6),(2,3),(4,10),(5,9),(7,8)] => 4 [(1,6),(2,4),(3,5),(7,10),(8,9)] => 6 [(1,6),(2,4),(3,5),(7,9),(8,10)] => 6 [(1,6),(2,4),(3,5),(7,8),(9,10)] => 7 [(1,6),(2,4),(3,7),(5,10),(8,9)] => 4 [(1,6),(2,4),(3,7),(5,9),(8,10)] => 4 [(1,6),(2,4),(3,7),(5,8),(9,10)] => 5 [(1,6),(2,4),(3,8),(5,7),(9,10)] => 5 [(1,6),(2,4),(3,8),(5,9),(7,10)] => 3 [(1,6),(2,4),(3,8),(5,10),(7,9)] => 3 [(1,6),(2,4),(3,9),(5,7),(8,10)] => 4 [(1,6),(2,4),(3,9),(5,8),(7,10)] => 3 [(1,6),(2,4),(3,9),(5,10),(7,8)] => 3 [(1,6),(2,4),(3,10),(5,7),(8,9)] => 4 [(1,6),(2,4),(3,10),(5,8),(7,9)] => 3 [(1,6),(2,4),(3,10),(5,9),(7,8)] => 3 [(1,6),(2,5),(3,4),(7,10),(8,9)] => 6 [(1,6),(2,5),(3,4),(7,9),(8,10)] => 6 [(1,6),(2,5),(3,4),(7,8),(9,10)] => 7 [(1,6),(2,5),(3,7),(4,10),(8,9)] => 3 [(1,6),(2,5),(3,7),(4,9),(8,10)] => 3 [(1,6),(2,5),(3,7),(4,8),(9,10)] => 4 [(1,6),(2,5),(3,8),(4,7),(9,10)] => 4 [(1,6),(2,5),(3,8),(4,9),(7,10)] => 2 [(1,6),(2,5),(3,8),(4,10),(7,9)] => 2 [(1,6),(2,5),(3,9),(4,7),(8,10)] => 3 [(1,6),(2,5),(3,9),(4,8),(7,10)] => 2 [(1,6),(2,5),(3,9),(4,10),(7,8)] => 2 [(1,6),(2,5),(3,10),(4,7),(8,9)] => 3 [(1,6),(2,5),(3,10),(4,8),(7,9)] => 2 [(1,6),(2,5),(3,10),(4,9),(7,8)] => 2 [(1,6),(2,7),(3,4),(5,10),(8,9)] => 4 [(1,6),(2,7),(3,4),(5,9),(8,10)] => 4 [(1,6),(2,7),(3,4),(5,8),(9,10)] => 5 [(1,6),(2,7),(3,5),(4,10),(8,9)] => 3 [(1,6),(2,7),(3,5),(4,9),(8,10)] => 3 [(1,6),(2,7),(3,5),(4,8),(9,10)] => 4 [(1,6),(2,7),(3,8),(4,5),(9,10)] => 4 [(1,6),(2,7),(3,8),(4,9),(5,10)] => 0 [(1,6),(2,7),(3,8),(4,10),(5,9)] => 0 [(1,6),(2,7),(3,9),(4,5),(8,10)] => 3 [(1,6),(2,7),(3,9),(4,8),(5,10)] => 0 [(1,6),(2,7),(3,9),(4,10),(5,8)] => 0 [(1,6),(2,7),(3,10),(4,5),(8,9)] => 3 [(1,6),(2,7),(3,10),(4,8),(5,9)] => 0 [(1,6),(2,7),(3,10),(4,9),(5,8)] => 0 [(1,6),(2,8),(3,4),(5,7),(9,10)] => 5 [(1,6),(2,8),(3,4),(5,9),(7,10)] => 3 [(1,6),(2,8),(3,4),(5,10),(7,9)] => 3 [(1,6),(2,8),(3,5),(4,7),(9,10)] => 4 [(1,6),(2,8),(3,5),(4,9),(7,10)] => 2 [(1,6),(2,8),(3,5),(4,10),(7,9)] => 2 [(1,6),(2,8),(3,7),(4,5),(9,10)] => 4 [(1,6),(2,8),(3,7),(4,9),(5,10)] => 0 [(1,6),(2,8),(3,7),(4,10),(5,9)] => 0 [(1,6),(2,8),(3,9),(4,10),(5,7)] => 0 [(1,6),(2,8),(3,9),(4,7),(5,10)] => 0 [(1,6),(2,8),(3,9),(4,5),(7,10)] => 2 [(1,6),(2,8),(3,10),(4,9),(5,7)] => 0 [(1,6),(2,8),(3,10),(4,7),(5,9)] => 0 [(1,6),(2,8),(3,10),(4,5),(7,9)] => 2 [(1,6),(2,9),(3,4),(5,7),(8,10)] => 4 [(1,6),(2,9),(3,4),(5,8),(7,10)] => 3 [(1,6),(2,9),(3,4),(5,10),(7,8)] => 3 [(1,6),(2,9),(3,5),(4,7),(8,10)] => 3 [(1,6),(2,9),(3,5),(4,8),(7,10)] => 2 [(1,6),(2,9),(3,5),(4,10),(7,8)] => 2 [(1,6),(2,9),(3,7),(4,5),(8,10)] => 3 [(1,6),(2,9),(3,7),(4,8),(5,10)] => 0 [(1,6),(2,9),(3,7),(4,10),(5,8)] => 0 [(1,6),(2,9),(3,8),(4,10),(5,7)] => 0 [(1,6),(2,9),(3,8),(4,7),(5,10)] => 0 [(1,6),(2,9),(3,8),(4,5),(7,10)] => 2 [(1,6),(2,9),(3,10),(4,8),(5,7)] => 0 [(1,6),(2,9),(3,10),(4,7),(5,8)] => 0 [(1,6),(2,9),(3,10),(4,5),(7,8)] => 2 [(1,6),(2,10),(3,4),(5,7),(8,9)] => 4 [(1,6),(2,10),(3,4),(5,8),(7,9)] => 3 [(1,6),(2,10),(3,4),(5,9),(7,8)] => 3 [(1,6),(2,10),(3,5),(4,7),(8,9)] => 3 [(1,6),(2,10),(3,5),(4,8),(7,9)] => 2 [(1,6),(2,10),(3,5),(4,9),(7,8)] => 2 [(1,6),(2,10),(3,7),(4,5),(8,9)] => 3 [(1,6),(2,10),(3,7),(4,8),(5,9)] => 0 [(1,6),(2,10),(3,7),(4,9),(5,8)] => 0 [(1,6),(2,10),(3,8),(4,9),(5,7)] => 0 [(1,6),(2,10),(3,8),(4,7),(5,9)] => 0 [(1,6),(2,10),(3,8),(4,5),(7,9)] => 2 [(1,6),(2,10),(3,9),(4,8),(5,7)] => 0 [(1,6),(2,10),(3,9),(4,7),(5,8)] => 0 [(1,6),(2,10),(3,9),(4,5),(7,8)] => 2 [(1,7),(2,3),(4,5),(6,10),(8,9)] => 6 [(1,7),(2,3),(4,5),(6,9),(8,10)] => 6 [(1,7),(2,3),(4,5),(6,8),(9,10)] => 7 [(1,7),(2,3),(4,6),(5,10),(8,9)] => 5 [(1,7),(2,3),(4,6),(5,9),(8,10)] => 5 [(1,7),(2,3),(4,6),(5,8),(9,10)] => 6 [(1,7),(2,3),(4,8),(5,6),(9,10)] => 6 [(1,7),(2,3),(4,8),(5,9),(6,10)] => 3 [(1,7),(2,3),(4,8),(5,10),(6,9)] => 3 [(1,7),(2,3),(4,9),(5,6),(8,10)] => 5 [(1,7),(2,3),(4,9),(5,8),(6,10)] => 3 [(1,7),(2,3),(4,9),(5,10),(6,8)] => 3 [(1,7),(2,3),(4,10),(5,6),(8,9)] => 5 [(1,7),(2,3),(4,10),(5,8),(6,9)] => 3 [(1,7),(2,3),(4,10),(5,9),(6,8)] => 3 [(1,7),(2,4),(3,5),(6,10),(8,9)] => 5 [(1,7),(2,4),(3,5),(6,9),(8,10)] => 5 [(1,7),(2,4),(3,5),(6,8),(9,10)] => 6 [(1,7),(2,4),(3,6),(5,10),(8,9)] => 4 [(1,7),(2,4),(3,6),(5,9),(8,10)] => 4 [(1,7),(2,4),(3,6),(5,8),(9,10)] => 5 [(1,7),(2,4),(3,8),(5,6),(9,10)] => 5 [(1,7),(2,4),(3,8),(5,9),(6,10)] => 2 [(1,7),(2,4),(3,8),(5,10),(6,9)] => 2 [(1,7),(2,4),(3,9),(5,6),(8,10)] => 4 [(1,7),(2,4),(3,9),(5,8),(6,10)] => 2 [(1,7),(2,4),(3,9),(5,10),(6,8)] => 2 [(1,7),(2,4),(3,10),(5,6),(8,9)] => 4 [(1,7),(2,4),(3,10),(5,8),(6,9)] => 2 [(1,7),(2,4),(3,10),(5,9),(6,8)] => 2 [(1,7),(2,5),(3,4),(6,10),(8,9)] => 5 [(1,7),(2,5),(3,4),(6,9),(8,10)] => 5 [(1,7),(2,5),(3,4),(6,8),(9,10)] => 6 [(1,7),(2,5),(3,6),(4,10),(8,9)] => 3 [(1,7),(2,5),(3,6),(4,9),(8,10)] => 3 [(1,7),(2,5),(3,6),(4,8),(9,10)] => 4 [(1,7),(2,5),(3,8),(4,6),(9,10)] => 4 [(1,7),(2,5),(3,8),(4,9),(6,10)] => 1 [(1,7),(2,5),(3,8),(4,10),(6,9)] => 1 [(1,7),(2,5),(3,9),(4,6),(8,10)] => 3 [(1,7),(2,5),(3,9),(4,8),(6,10)] => 1 [(1,7),(2,5),(3,9),(4,10),(6,8)] => 1 [(1,7),(2,5),(3,10),(4,6),(8,9)] => 3 [(1,7),(2,5),(3,10),(4,8),(6,9)] => 1 [(1,7),(2,5),(3,10),(4,9),(6,8)] => 1 [(1,7),(2,6),(3,4),(5,10),(8,9)] => 4 [(1,7),(2,6),(3,4),(5,9),(8,10)] => 4 [(1,7),(2,6),(3,4),(5,8),(9,10)] => 5 [(1,7),(2,6),(3,5),(4,10),(8,9)] => 3 [(1,7),(2,6),(3,5),(4,9),(8,10)] => 3 [(1,7),(2,6),(3,5),(4,8),(9,10)] => 4 [(1,7),(2,6),(3,8),(4,5),(9,10)] => 4 [(1,7),(2,6),(3,8),(4,9),(5,10)] => 0 [(1,7),(2,6),(3,8),(4,10),(5,9)] => 0 [(1,7),(2,6),(3,9),(4,5),(8,10)] => 3 [(1,7),(2,6),(3,9),(4,8),(5,10)] => 0 [(1,7),(2,6),(3,9),(4,10),(5,8)] => 0 [(1,7),(2,6),(3,10),(4,5),(8,9)] => 3 [(1,7),(2,6),(3,10),(4,8),(5,9)] => 0 [(1,7),(2,6),(3,10),(4,9),(5,8)] => 0 [(1,7),(2,8),(3,4),(5,6),(9,10)] => 5 [(1,7),(2,8),(3,4),(5,9),(6,10)] => 2 [(1,7),(2,8),(3,4),(5,10),(6,9)] => 2 [(1,7),(2,8),(3,5),(4,6),(9,10)] => 4 [(1,7),(2,8),(3,5),(4,9),(6,10)] => 1 [(1,7),(2,8),(3,5),(4,10),(6,9)] => 1 [(1,7),(2,8),(3,6),(4,5),(9,10)] => 4 [(1,7),(2,8),(3,6),(4,9),(5,10)] => 0 [(1,7),(2,8),(3,6),(4,10),(5,9)] => 0 [(1,7),(2,8),(3,9),(4,10),(5,6)] => 0 [(1,7),(2,8),(3,9),(4,6),(5,10)] => 0 [(1,7),(2,8),(3,9),(4,5),(6,10)] => 1 [(1,7),(2,8),(3,10),(4,9),(5,6)] => 0 [(1,7),(2,8),(3,10),(4,6),(5,9)] => 0 [(1,7),(2,8),(3,10),(4,5),(6,9)] => 1 [(1,7),(2,9),(3,4),(5,6),(8,10)] => 4 [(1,7),(2,9),(3,4),(5,8),(6,10)] => 2 [(1,7),(2,9),(3,4),(5,10),(6,8)] => 2 [(1,7),(2,9),(3,5),(4,6),(8,10)] => 3 [(1,7),(2,9),(3,5),(4,8),(6,10)] => 1 [(1,7),(2,9),(3,5),(4,10),(6,8)] => 1 [(1,7),(2,9),(3,6),(4,5),(8,10)] => 3 [(1,7),(2,9),(3,6),(4,8),(5,10)] => 0 [(1,7),(2,9),(3,6),(4,10),(5,8)] => 0 [(1,7),(2,9),(3,8),(4,10),(5,6)] => 0 [(1,7),(2,9),(3,8),(4,6),(5,10)] => 0 [(1,7),(2,9),(3,8),(4,5),(6,10)] => 1 [(1,7),(2,9),(3,10),(4,8),(5,6)] => 0 [(1,7),(2,9),(3,10),(4,6),(5,8)] => 0 [(1,7),(2,9),(3,10),(4,5),(6,8)] => 1 [(1,7),(2,10),(3,4),(5,6),(8,9)] => 4 [(1,7),(2,10),(3,4),(5,8),(6,9)] => 2 [(1,7),(2,10),(3,4),(5,9),(6,8)] => 2 [(1,7),(2,10),(3,5),(4,6),(8,9)] => 3 [(1,7),(2,10),(3,5),(4,8),(6,9)] => 1 [(1,7),(2,10),(3,5),(4,9),(6,8)] => 1 [(1,7),(2,10),(3,6),(4,5),(8,9)] => 3 [(1,7),(2,10),(3,6),(4,8),(5,9)] => 0 [(1,7),(2,10),(3,6),(4,9),(5,8)] => 0 [(1,7),(2,10),(3,8),(4,9),(5,6)] => 0 [(1,7),(2,10),(3,8),(4,6),(5,9)] => 0 [(1,7),(2,10),(3,8),(4,5),(6,9)] => 1 [(1,7),(2,10),(3,9),(4,8),(5,6)] => 0 [(1,7),(2,10),(3,9),(4,6),(5,8)] => 0 [(1,7),(2,10),(3,9),(4,5),(6,8)] => 1 [(1,8),(2,3),(4,5),(6,7),(9,10)] => 7 [(1,8),(2,3),(4,5),(6,9),(7,10)] => 5 [(1,8),(2,3),(4,5),(6,10),(7,9)] => 5 [(1,8),(2,3),(4,6),(5,7),(9,10)] => 6 [(1,8),(2,3),(4,6),(5,9),(7,10)] => 4 [(1,8),(2,3),(4,6),(5,10),(7,9)] => 4 [(1,8),(2,3),(4,7),(5,6),(9,10)] => 6 [(1,8),(2,3),(4,7),(5,9),(6,10)] => 3 [(1,8),(2,3),(4,7),(5,10),(6,9)] => 3 [(1,8),(2,3),(4,9),(5,10),(6,7)] => 3 [(1,8),(2,3),(4,9),(5,7),(6,10)] => 3 [(1,8),(2,3),(4,9),(5,6),(7,10)] => 4 [(1,8),(2,3),(4,10),(5,9),(6,7)] => 3 [(1,8),(2,3),(4,10),(5,7),(6,9)] => 3 [(1,8),(2,3),(4,10),(5,6),(7,9)] => 4 [(1,8),(2,4),(3,5),(6,7),(9,10)] => 6 [(1,8),(2,4),(3,5),(6,9),(7,10)] => 4 [(1,8),(2,4),(3,5),(6,10),(7,9)] => 4 [(1,8),(2,4),(3,6),(5,7),(9,10)] => 5 [(1,8),(2,4),(3,6),(5,9),(7,10)] => 3 [(1,8),(2,4),(3,6),(5,10),(7,9)] => 3 [(1,8),(2,4),(3,7),(5,6),(9,10)] => 5 [(1,8),(2,4),(3,7),(5,9),(6,10)] => 2 [(1,8),(2,4),(3,7),(5,10),(6,9)] => 2 [(1,8),(2,4),(3,9),(5,10),(6,7)] => 2 [(1,8),(2,4),(3,9),(5,7),(6,10)] => 2 [(1,8),(2,4),(3,9),(5,6),(7,10)] => 3 [(1,8),(2,4),(3,10),(5,9),(6,7)] => 2 [(1,8),(2,4),(3,10),(5,7),(6,9)] => 2 [(1,8),(2,4),(3,10),(5,6),(7,9)] => 3 [(1,8),(2,5),(3,4),(6,7),(9,10)] => 6 [(1,8),(2,5),(3,4),(6,9),(7,10)] => 4 [(1,8),(2,5),(3,4),(6,10),(7,9)] => 4 [(1,8),(2,5),(3,6),(4,7),(9,10)] => 4 [(1,8),(2,5),(3,6),(4,9),(7,10)] => 2 [(1,8),(2,5),(3,6),(4,10),(7,9)] => 2 [(1,8),(2,5),(3,7),(4,6),(9,10)] => 4 [(1,8),(2,5),(3,7),(4,9),(6,10)] => 1 [(1,8),(2,5),(3,7),(4,10),(6,9)] => 1 [(1,8),(2,5),(3,9),(4,10),(6,7)] => 1 [(1,8),(2,5),(3,9),(4,7),(6,10)] => 1 [(1,8),(2,5),(3,9),(4,6),(7,10)] => 2 [(1,8),(2,5),(3,10),(4,9),(6,7)] => 1 [(1,8),(2,5),(3,10),(4,7),(6,9)] => 1 [(1,8),(2,5),(3,10),(4,6),(7,9)] => 2 [(1,8),(2,6),(3,4),(5,7),(9,10)] => 5 [(1,8),(2,6),(3,4),(5,9),(7,10)] => 3 [(1,8),(2,6),(3,4),(5,10),(7,9)] => 3 [(1,8),(2,6),(3,5),(4,7),(9,10)] => 4 [(1,8),(2,6),(3,5),(4,9),(7,10)] => 2 [(1,8),(2,6),(3,5),(4,10),(7,9)] => 2 [(1,8),(2,6),(3,7),(4,5),(9,10)] => 4 [(1,8),(2,6),(3,7),(4,9),(5,10)] => 0 [(1,8),(2,6),(3,7),(4,10),(5,9)] => 0 [(1,8),(2,6),(3,9),(4,10),(5,7)] => 0 [(1,8),(2,6),(3,9),(4,7),(5,10)] => 0 [(1,8),(2,6),(3,9),(4,5),(7,10)] => 2 [(1,8),(2,6),(3,10),(4,9),(5,7)] => 0 [(1,8),(2,6),(3,10),(4,7),(5,9)] => 0 [(1,8),(2,6),(3,10),(4,5),(7,9)] => 2 [(1,8),(2,7),(3,4),(5,6),(9,10)] => 5 [(1,8),(2,7),(3,4),(5,9),(6,10)] => 2 [(1,8),(2,7),(3,4),(5,10),(6,9)] => 2 [(1,8),(2,7),(3,5),(4,6),(9,10)] => 4 [(1,8),(2,7),(3,5),(4,9),(6,10)] => 1 [(1,8),(2,7),(3,5),(4,10),(6,9)] => 1 [(1,8),(2,7),(3,6),(4,5),(9,10)] => 4 [(1,8),(2,7),(3,6),(4,9),(5,10)] => 0 [(1,8),(2,7),(3,6),(4,10),(5,9)] => 0 [(1,8),(2,7),(3,9),(4,10),(5,6)] => 0 [(1,8),(2,7),(3,9),(4,6),(5,10)] => 0 [(1,8),(2,7),(3,9),(4,5),(6,10)] => 1 [(1,8),(2,7),(3,10),(4,9),(5,6)] => 0 [(1,8),(2,7),(3,10),(4,6),(5,9)] => 0 [(1,8),(2,7),(3,10),(4,5),(6,9)] => 1 [(1,8),(2,9),(3,4),(5,10),(6,7)] => 2 [(1,8),(2,9),(3,4),(5,7),(6,10)] => 2 [(1,8),(2,9),(3,4),(5,6),(7,10)] => 3 [(1,8),(2,9),(3,5),(4,10),(6,7)] => 1 [(1,8),(2,9),(3,5),(4,7),(6,10)] => 1 [(1,8),(2,9),(3,5),(4,6),(7,10)] => 2 [(1,8),(2,9),(3,6),(4,10),(5,7)] => 0 [(1,8),(2,9),(3,6),(4,7),(5,10)] => 0 [(1,8),(2,9),(3,6),(4,5),(7,10)] => 2 [(1,8),(2,9),(3,7),(4,10),(5,6)] => 0 [(1,8),(2,9),(3,7),(4,6),(5,10)] => 0 [(1,8),(2,9),(3,7),(4,5),(6,10)] => 1 [(1,8),(2,9),(3,10),(4,5),(6,7)] => 1 [(1,8),(2,9),(3,10),(4,6),(5,7)] => 0 [(1,8),(2,9),(3,10),(4,7),(5,6)] => 0 [(1,8),(2,10),(3,4),(5,9),(6,7)] => 2 [(1,8),(2,10),(3,4),(5,7),(6,9)] => 2 [(1,8),(2,10),(3,4),(5,6),(7,9)] => 3 [(1,8),(2,10),(3,5),(4,9),(6,7)] => 1 [(1,8),(2,10),(3,5),(4,7),(6,9)] => 1 [(1,8),(2,10),(3,5),(4,6),(7,9)] => 2 [(1,8),(2,10),(3,6),(4,9),(5,7)] => 0 [(1,8),(2,10),(3,6),(4,7),(5,9)] => 0 [(1,8),(2,10),(3,6),(4,5),(7,9)] => 2 [(1,8),(2,10),(3,7),(4,9),(5,6)] => 0 [(1,8),(2,10),(3,7),(4,6),(5,9)] => 0 [(1,8),(2,10),(3,7),(4,5),(6,9)] => 1 [(1,8),(2,10),(3,9),(4,5),(6,7)] => 1 [(1,8),(2,10),(3,9),(4,6),(5,7)] => 0 [(1,8),(2,10),(3,9),(4,7),(5,6)] => 0 [(1,9),(2,3),(4,5),(6,7),(8,10)] => 6 [(1,9),(2,3),(4,5),(6,8),(7,10)] => 5 [(1,9),(2,3),(4,5),(6,10),(7,8)] => 5 [(1,9),(2,3),(4,6),(5,7),(8,10)] => 5 [(1,9),(2,3),(4,6),(5,8),(7,10)] => 4 [(1,9),(2,3),(4,6),(5,10),(7,8)] => 4 [(1,9),(2,3),(4,7),(5,6),(8,10)] => 5 [(1,9),(2,3),(4,7),(5,8),(6,10)] => 3 [(1,9),(2,3),(4,7),(5,10),(6,8)] => 3 [(1,9),(2,3),(4,8),(5,10),(6,7)] => 3 [(1,9),(2,3),(4,8),(5,7),(6,10)] => 3 [(1,9),(2,3),(4,8),(5,6),(7,10)] => 4 [(1,9),(2,3),(4,10),(5,8),(6,7)] => 3 [(1,9),(2,3),(4,10),(5,7),(6,8)] => 3 [(1,9),(2,3),(4,10),(5,6),(7,8)] => 4 [(1,9),(2,4),(3,5),(6,7),(8,10)] => 5 [(1,9),(2,4),(3,5),(6,8),(7,10)] => 4 [(1,9),(2,4),(3,5),(6,10),(7,8)] => 4 [(1,9),(2,4),(3,6),(5,7),(8,10)] => 4 [(1,9),(2,4),(3,6),(5,8),(7,10)] => 3 [(1,9),(2,4),(3,6),(5,10),(7,8)] => 3 [(1,9),(2,4),(3,7),(5,6),(8,10)] => 4 [(1,9),(2,4),(3,7),(5,8),(6,10)] => 2 [(1,9),(2,4),(3,7),(5,10),(6,8)] => 2 [(1,9),(2,4),(3,8),(5,10),(6,7)] => 2 [(1,9),(2,4),(3,8),(5,7),(6,10)] => 2 [(1,9),(2,4),(3,8),(5,6),(7,10)] => 3 [(1,9),(2,4),(3,10),(5,8),(6,7)] => 2 [(1,9),(2,4),(3,10),(5,7),(6,8)] => 2 [(1,9),(2,4),(3,10),(5,6),(7,8)] => 3 [(1,9),(2,5),(3,4),(6,7),(8,10)] => 5 [(1,9),(2,5),(3,4),(6,8),(7,10)] => 4 [(1,9),(2,5),(3,4),(6,10),(7,8)] => 4 [(1,9),(2,5),(3,6),(4,7),(8,10)] => 3 [(1,9),(2,5),(3,6),(4,8),(7,10)] => 2 [(1,9),(2,5),(3,6),(4,10),(7,8)] => 2 [(1,9),(2,5),(3,7),(4,6),(8,10)] => 3 [(1,9),(2,5),(3,7),(4,8),(6,10)] => 1 [(1,9),(2,5),(3,7),(4,10),(6,8)] => 1 [(1,9),(2,5),(3,8),(4,10),(6,7)] => 1 [(1,9),(2,5),(3,8),(4,7),(6,10)] => 1 [(1,9),(2,5),(3,8),(4,6),(7,10)] => 2 [(1,9),(2,5),(3,10),(4,8),(6,7)] => 1 [(1,9),(2,5),(3,10),(4,7),(6,8)] => 1 [(1,9),(2,5),(3,10),(4,6),(7,8)] => 2 [(1,9),(2,6),(3,4),(5,7),(8,10)] => 4 [(1,9),(2,6),(3,4),(5,8),(7,10)] => 3 [(1,9),(2,6),(3,4),(5,10),(7,8)] => 3 [(1,9),(2,6),(3,5),(4,7),(8,10)] => 3 [(1,9),(2,6),(3,5),(4,8),(7,10)] => 2 [(1,9),(2,6),(3,5),(4,10),(7,8)] => 2 [(1,9),(2,6),(3,7),(4,5),(8,10)] => 3 [(1,9),(2,6),(3,7),(4,8),(5,10)] => 0 [(1,9),(2,6),(3,7),(4,10),(5,8)] => 0 [(1,9),(2,6),(3,8),(4,10),(5,7)] => 0 [(1,9),(2,6),(3,8),(4,7),(5,10)] => 0 [(1,9),(2,6),(3,8),(4,5),(7,10)] => 2 [(1,9),(2,6),(3,10),(4,8),(5,7)] => 0 [(1,9),(2,6),(3,10),(4,7),(5,8)] => 0 [(1,9),(2,6),(3,10),(4,5),(7,8)] => 2 [(1,9),(2,7),(3,4),(5,6),(8,10)] => 4 [(1,9),(2,7),(3,4),(5,8),(6,10)] => 2 [(1,9),(2,7),(3,4),(5,10),(6,8)] => 2 [(1,9),(2,7),(3,5),(4,6),(8,10)] => 3 [(1,9),(2,7),(3,5),(4,8),(6,10)] => 1 [(1,9),(2,7),(3,5),(4,10),(6,8)] => 1 [(1,9),(2,7),(3,6),(4,5),(8,10)] => 3 [(1,9),(2,7),(3,6),(4,8),(5,10)] => 0 [(1,9),(2,7),(3,6),(4,10),(5,8)] => 0 [(1,9),(2,7),(3,8),(4,10),(5,6)] => 0 [(1,9),(2,7),(3,8),(4,6),(5,10)] => 0 [(1,9),(2,7),(3,8),(4,5),(6,10)] => 1 [(1,9),(2,7),(3,10),(4,8),(5,6)] => 0 [(1,9),(2,7),(3,10),(4,6),(5,8)] => 0 [(1,9),(2,7),(3,10),(4,5),(6,8)] => 1 [(1,9),(2,8),(3,4),(5,10),(6,7)] => 2 [(1,9),(2,8),(3,4),(5,7),(6,10)] => 2 [(1,9),(2,8),(3,4),(5,6),(7,10)] => 3 [(1,9),(2,8),(3,5),(4,10),(6,7)] => 1 [(1,9),(2,8),(3,5),(4,7),(6,10)] => 1 [(1,9),(2,8),(3,5),(4,6),(7,10)] => 2 [(1,9),(2,8),(3,6),(4,10),(5,7)] => 0 [(1,9),(2,8),(3,6),(4,7),(5,10)] => 0 [(1,9),(2,8),(3,6),(4,5),(7,10)] => 2 [(1,9),(2,8),(3,7),(4,10),(5,6)] => 0 [(1,9),(2,8),(3,7),(4,6),(5,10)] => 0 [(1,9),(2,8),(3,7),(4,5),(6,10)] => 1 [(1,9),(2,8),(3,10),(4,5),(6,7)] => 1 [(1,9),(2,8),(3,10),(4,6),(5,7)] => 0 [(1,9),(2,8),(3,10),(4,7),(5,6)] => 0 [(1,9),(2,10),(3,4),(5,8),(6,7)] => 2 [(1,9),(2,10),(3,4),(5,7),(6,8)] => 2 [(1,9),(2,10),(3,4),(5,6),(7,8)] => 3 [(1,9),(2,10),(3,5),(4,8),(6,7)] => 1 [(1,9),(2,10),(3,5),(4,7),(6,8)] => 1 [(1,9),(2,10),(3,5),(4,6),(7,8)] => 2 [(1,9),(2,10),(3,6),(4,8),(5,7)] => 0 [(1,9),(2,10),(3,6),(4,7),(5,8)] => 0 [(1,9),(2,10),(3,6),(4,5),(7,8)] => 2 [(1,9),(2,10),(3,7),(4,8),(5,6)] => 0 [(1,9),(2,10),(3,7),(4,6),(5,8)] => 0 [(1,9),(2,10),(3,7),(4,5),(6,8)] => 1 [(1,9),(2,10),(3,8),(4,5),(6,7)] => 1 [(1,9),(2,10),(3,8),(4,6),(5,7)] => 0 [(1,9),(2,10),(3,8),(4,7),(5,6)] => 0 [(1,10),(2,3),(4,5),(6,7),(8,9)] => 6 [(1,10),(2,3),(4,5),(6,8),(7,9)] => 5 [(1,10),(2,3),(4,5),(6,9),(7,8)] => 5 [(1,10),(2,3),(4,6),(5,7),(8,9)] => 5 [(1,10),(2,3),(4,6),(5,8),(7,9)] => 4 [(1,10),(2,3),(4,6),(5,9),(7,8)] => 4 [(1,10),(2,3),(4,7),(5,6),(8,9)] => 5 [(1,10),(2,3),(4,7),(5,8),(6,9)] => 3 [(1,10),(2,3),(4,7),(5,9),(6,8)] => 3 [(1,10),(2,3),(4,8),(5,9),(6,7)] => 3 [(1,10),(2,3),(4,8),(5,7),(6,9)] => 3 [(1,10),(2,3),(4,8),(5,6),(7,9)] => 4 [(1,10),(2,3),(4,9),(5,8),(6,7)] => 3 [(1,10),(2,3),(4,9),(5,7),(6,8)] => 3 [(1,10),(2,3),(4,9),(5,6),(7,8)] => 4 [(1,10),(2,4),(3,5),(6,7),(8,9)] => 5 [(1,10),(2,4),(3,5),(6,8),(7,9)] => 4 [(1,10),(2,4),(3,5),(6,9),(7,8)] => 4 [(1,10),(2,4),(3,6),(5,7),(8,9)] => 4 [(1,10),(2,4),(3,6),(5,8),(7,9)] => 3 [(1,10),(2,4),(3,6),(5,9),(7,8)] => 3 [(1,10),(2,4),(3,7),(5,6),(8,9)] => 4 [(1,10),(2,4),(3,7),(5,8),(6,9)] => 2 [(1,10),(2,4),(3,7),(5,9),(6,8)] => 2 [(1,10),(2,4),(3,8),(5,9),(6,7)] => 2 [(1,10),(2,4),(3,8),(5,7),(6,9)] => 2 [(1,10),(2,4),(3,8),(5,6),(7,9)] => 3 [(1,10),(2,4),(3,9),(5,8),(6,7)] => 2 [(1,10),(2,4),(3,9),(5,7),(6,8)] => 2 [(1,10),(2,4),(3,9),(5,6),(7,8)] => 3 [(1,10),(2,5),(3,4),(6,7),(8,9)] => 5 [(1,10),(2,5),(3,4),(6,8),(7,9)] => 4 [(1,10),(2,5),(3,4),(6,9),(7,8)] => 4 [(1,10),(2,5),(3,6),(4,7),(8,9)] => 3 [(1,10),(2,5),(3,6),(4,8),(7,9)] => 2 [(1,10),(2,5),(3,6),(4,9),(7,8)] => 2 [(1,10),(2,5),(3,7),(4,6),(8,9)] => 3 [(1,10),(2,5),(3,7),(4,8),(6,9)] => 1 [(1,10),(2,5),(3,7),(4,9),(6,8)] => 1 [(1,10),(2,5),(3,8),(4,9),(6,7)] => 1 [(1,10),(2,5),(3,8),(4,7),(6,9)] => 1 [(1,10),(2,5),(3,8),(4,6),(7,9)] => 2 [(1,10),(2,5),(3,9),(4,8),(6,7)] => 1 [(1,10),(2,5),(3,9),(4,7),(6,8)] => 1 [(1,10),(2,5),(3,9),(4,6),(7,8)] => 2 [(1,10),(2,6),(3,4),(5,7),(8,9)] => 4 [(1,10),(2,6),(3,4),(5,8),(7,9)] => 3 [(1,10),(2,6),(3,4),(5,9),(7,8)] => 3 [(1,10),(2,6),(3,5),(4,7),(8,9)] => 3 [(1,10),(2,6),(3,5),(4,8),(7,9)] => 2 [(1,10),(2,6),(3,5),(4,9),(7,8)] => 2 [(1,10),(2,6),(3,7),(4,5),(8,9)] => 3 [(1,10),(2,6),(3,7),(4,8),(5,9)] => 0 [(1,10),(2,6),(3,7),(4,9),(5,8)] => 0 [(1,10),(2,6),(3,8),(4,9),(5,7)] => 0 [(1,10),(2,6),(3,8),(4,7),(5,9)] => 0 [(1,10),(2,6),(3,8),(4,5),(7,9)] => 2 [(1,10),(2,6),(3,9),(4,8),(5,7)] => 0 [(1,10),(2,6),(3,9),(4,7),(5,8)] => 0 [(1,10),(2,6),(3,9),(4,5),(7,8)] => 2 [(1,10),(2,7),(3,4),(5,6),(8,9)] => 4 [(1,10),(2,7),(3,4),(5,8),(6,9)] => 2 [(1,10),(2,7),(3,4),(5,9),(6,8)] => 2 [(1,10),(2,7),(3,5),(4,6),(8,9)] => 3 [(1,10),(2,7),(3,5),(4,8),(6,9)] => 1 [(1,10),(2,7),(3,5),(4,9),(6,8)] => 1 [(1,10),(2,7),(3,6),(4,5),(8,9)] => 3 [(1,10),(2,7),(3,6),(4,8),(5,9)] => 0 [(1,10),(2,7),(3,6),(4,9),(5,8)] => 0 [(1,10),(2,7),(3,8),(4,9),(5,6)] => 0 [(1,10),(2,7),(3,8),(4,6),(5,9)] => 0 [(1,10),(2,7),(3,8),(4,5),(6,9)] => 1 [(1,10),(2,7),(3,9),(4,8),(5,6)] => 0 [(1,10),(2,7),(3,9),(4,6),(5,8)] => 0 [(1,10),(2,7),(3,9),(4,5),(6,8)] => 1 [(1,10),(2,8),(3,4),(5,9),(6,7)] => 2 [(1,10),(2,8),(3,4),(5,7),(6,9)] => 2 [(1,10),(2,8),(3,4),(5,6),(7,9)] => 3 [(1,10),(2,8),(3,5),(4,9),(6,7)] => 1 [(1,10),(2,8),(3,5),(4,7),(6,9)] => 1 [(1,10),(2,8),(3,5),(4,6),(7,9)] => 2 [(1,10),(2,8),(3,6),(4,9),(5,7)] => 0 [(1,10),(2,8),(3,6),(4,7),(5,9)] => 0 [(1,10),(2,8),(3,6),(4,5),(7,9)] => 2 [(1,10),(2,8),(3,7),(4,9),(5,6)] => 0 [(1,10),(2,8),(3,7),(4,6),(5,9)] => 0 [(1,10),(2,8),(3,7),(4,5),(6,9)] => 1 [(1,10),(2,8),(3,9),(4,5),(6,7)] => 1 [(1,10),(2,8),(3,9),(4,6),(5,7)] => 0 [(1,10),(2,8),(3,9),(4,7),(5,6)] => 0 [(1,10),(2,9),(3,4),(5,8),(6,7)] => 2 [(1,10),(2,9),(3,4),(5,7),(6,8)] => 2 [(1,10),(2,9),(3,4),(5,6),(7,8)] => 3 [(1,10),(2,9),(3,5),(4,8),(6,7)] => 1 [(1,10),(2,9),(3,5),(4,7),(6,8)] => 1 [(1,10),(2,9),(3,5),(4,6),(7,8)] => 2 [(1,10),(2,9),(3,6),(4,8),(5,7)] => 0 [(1,10),(2,9),(3,6),(4,7),(5,8)] => 0 [(1,10),(2,9),(3,6),(4,5),(7,8)] => 2 [(1,10),(2,9),(3,7),(4,8),(5,6)] => 0 [(1,10),(2,9),(3,7),(4,6),(5,8)] => 0 [(1,10),(2,9),(3,7),(4,5),(6,8)] => 1 [(1,10),(2,9),(3,8),(4,5),(6,7)] => 1 [(1,10),(2,9),(3,8),(4,6),(5,7)] => 0 [(1,10),(2,9),(3,8),(4,7),(5,6)] => 0 [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => 15 [(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] => 14 [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => 14 [(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] => 14 [(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] => 13 [(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] => 13 [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => 14 [(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] => 12 [(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] => 12 [(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] => 13 [(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] => 12 [(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] => 12 [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] => 13 [(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] => 12 [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => 12 [(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] => 14 [(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] => 13 [(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] => 13 [(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] => 13 [(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] => 12 [(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] => 12 [(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] => 13 [(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] => 11 [(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] => 11 [(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] => 12 [(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] => 11 [(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] => 11 [(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] => 12 [(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] => 11 [(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] => 11 [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => 14 [(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] => 13 [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => 13 [(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] => 11 [(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] => 11 [(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] => 12 [(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] => 10 [(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] => 10 [(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] => 12 [(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] => 10 [(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] => 10 [(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] => 11 [(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] => 10 [(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] => 10 [(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] => 11 [(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] => 13 [(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] => 12 [(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] => 12 [(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] => 11 [(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] => 11 [(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] => 12 [(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] => 9 [(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] => 9 [(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] => 12 [(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] => 9 [(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] => 9 [(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] => 11 [(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] => 9 [(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] => 9 [(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] => 11 [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => 13 [(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] => 11 [(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] => 11 [(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] => 10 [(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] => 10 [(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] => 12 [(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] => 9 [(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] => 9 [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => 12 [(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] => 9 [(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] => 9 [(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] => 10 [(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] => 9 [(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] => 9 [(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] => 10 [(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] => 12 [(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] => 11 [(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] => 11 [(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] => 10 [(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] => 10 [(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] => 11 [(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] => 9 [(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] => 9 [(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] => 11 [(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] => 9 [(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] => 9 [(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] => 10 [(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] => 9 [(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] => 9 [(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] => 10 [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => 12 [(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] => 11 [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] => 11 [(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] => 10 [(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] => 10 [(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] => 11 [(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] => 9 [(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] => 9 [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] => 11 [(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] => 9 [(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] => 9 [(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] => 10 [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => 9 [(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] => 9 [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => 10 [(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] => 14 [(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] => 13 [(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] => 13 [(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] => 13 [(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] => 12 [(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] => 12 [(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] => 13 [(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] => 11 [(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] => 11 [(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] => 12 [(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] => 11 [(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] => 11 [(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] => 12 [(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] => 11 [(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] => 11 [(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] => 13 [(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] => 12 [(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] => 12 [(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] => 12 [(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] => 11 [(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] => 11 [(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] => 12 [(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] => 10 [(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] => 10 [(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] => 11 [(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] => 10 ----------------------------------------------------------------------------- Created: Mar 25, 2017 at 22:04 by Martin Rubey ----------------------------------------------------------------------------- Last Updated: Nov 12, 2017 at 19:47 by Martin Rubey