edit this page

Possible database queries for parking functions: search your data / browse all statistics / browse all maps

1. Definition & Example

The sixteen parking functions size 3 in their orbits under entry permutations

 [1,1,1] 

 [1,1,2]   [1,2,1]   [2,1,1] 

 [1,1,3]   [1,3,1]   [3,1,1] 

 [1,2,2]   [2,1,2]   [2,2,1] 

 [1,2,3]   [1,3,2]   [2,1,3]   [2,3,1]   [3,1,2]   [3,2,1] 

2. FindStat representation and coverage

3. Additional information

3.1. Parking functions and parking cars

3.2. Parking Functions as labelled Dyck Paths

3.3. Properties

4. References

[CM2015]   E. Carlsson and A. Mellit, A Proof of the Shuffle Conjecture, http://arxiv.org/pdf/1508.06239v1.pdf.

[Hag2008]   J. Haglund, The q,t-Catalan numbers and the space of diagonal harmonics, University Lecture Series, American Mathematical Society, Providence, RI, (2008).

[Hic2010]   A. Hicks, A Parking Function Bijection Suggested by the Haglund-Morse-Zabrocki Conjecture, University of California- San Diego, (2010).

[Sta]   R. Stanley, Parking Functions, http://math.mit.edu/~rstan/transparencies/parking.pdf.

5. Sage examples


CategoryCombinatorialCollection