Identifier
Mp00058:
Perfect matchings
—to permutation⟶
Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00239: Permutations —Corteel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Images
=>
Cc0012;cc-rep-0Cc0020;cc-rep-3
[(1,2)]=>[2,1]=>[2,1]=>([(0,1)],2)
[(1,2),(3,4)]=>[2,1,4,3]=>[2,1,4,3]=>([(0,3),(1,2)],4)
[(1,3),(2,4)]=>[3,4,1,2]=>[4,3,2,1]=>([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
[(1,4),(2,3)]=>[4,3,2,1]=>[3,4,1,2]=>([(0,2),(0,3),(1,2),(1,3)],4)
[(1,2),(3,4),(5,6)]=>[2,1,4,3,6,5]=>[2,1,4,3,6,5]=>([(0,5),(1,4),(2,3)],6)
[(1,3),(2,4),(5,6)]=>[3,4,1,2,6,5]=>[4,3,2,1,6,5]=>([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,4),(2,3),(5,6)]=>[4,3,2,1,6,5]=>[3,4,1,2,6,5]=>([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
[(1,5),(2,3),(4,6)]=>[5,3,2,6,1,4]=>[3,6,1,5,4,2]=>([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,6),(2,3),(4,5)]=>[6,3,2,5,4,1]=>[3,5,1,6,2,4]=>([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
[(1,6),(2,4),(3,5)]=>[6,4,5,2,3,1]=>[4,6,5,2,1,3]=>([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,5),(2,4),(3,6)]=>[5,4,6,2,1,3]=>[5,6,4,2,3,1]=>([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,4),(2,5),(3,6)]=>[4,5,6,1,2,3]=>[6,5,4,3,2,1]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,3),(2,5),(4,6)]=>[3,5,1,6,2,4]=>[6,3,2,5,4,1]=>([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,2),(3,5),(4,6)]=>[2,1,5,6,3,4]=>[2,1,6,5,4,3]=>([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,2),(3,6),(4,5)]=>[2,1,6,5,4,3]=>[2,1,5,6,3,4]=>([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
[(1,3),(2,6),(4,5)]=>[3,6,1,5,4,2]=>[5,3,2,6,1,4]=>([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,4),(2,6),(3,5)]=>[4,6,5,1,3,2]=>[6,4,5,3,1,2]=>([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,5),(2,6),(3,4)]=>[5,6,4,3,1,2]=>[5,4,6,1,3,2]=>([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
[(1,6),(2,5),(3,4)]=>[6,5,4,3,2,1]=>[4,5,6,1,2,3]=>([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
[(1,2),(3,4),(5,6),(7,8)]=>[2,1,4,3,6,5,8,7]=>[2,1,4,3,6,5,8,7]=>([(0,7),(1,6),(2,5),(3,4)],8)
[(1,3),(2,4),(5,6),(7,8)]=>[3,4,1,2,6,5,8,7]=>[4,3,2,1,6,5,8,7]=>([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,4),(2,3),(5,6),(7,8)]=>[4,3,2,1,6,5,8,7]=>[3,4,1,2,6,5,8,7]=>([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8)
[(1,5),(2,3),(4,6),(7,8)]=>[5,3,2,6,1,4,8,7]=>[3,6,1,5,4,2,8,7]=>([(0,1),(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,6),(2,3),(4,5),(7,8)]=>[6,3,2,5,4,1,8,7]=>[3,5,1,6,2,4,8,7]=>([(0,1),(2,5),(2,7),(3,4),(3,7),(4,6),(5,6),(6,7)],8)
[(1,7),(2,3),(4,5),(6,8)]=>[7,3,2,5,4,8,1,6]=>[3,5,1,8,2,7,6,4]=>([(0,1),(0,5),(1,4),(2,3),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
[(1,8),(2,3),(4,5),(6,7)]=>[8,3,2,5,4,7,6,1]=>[3,5,1,7,2,8,4,6]=>([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
[(1,4),(2,5),(3,6),(7,8)]=>[4,5,6,1,2,3,8,7]=>[6,5,4,3,2,1,8,7]=>([(0,1),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,3),(2,5),(4,6),(7,8)]=>[3,5,1,6,2,4,8,7]=>[6,3,2,5,4,1,8,7]=>([(0,1),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,2),(3,5),(4,6),(7,8)]=>[2,1,5,6,3,4,8,7]=>[2,1,6,5,4,3,8,7]=>([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,2),(3,6),(4,5),(7,8)]=>[2,1,6,5,4,3,8,7]=>[2,1,5,6,3,4,8,7]=>([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8)
[(1,3),(2,6),(4,5),(7,8)]=>[3,6,1,5,4,2,8,7]=>[5,3,2,6,1,4,8,7]=>([(0,1),(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,6),(2,5),(3,4),(7,8)]=>[6,5,4,3,2,1,8,7]=>[4,5,6,1,2,3,8,7]=>([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
[(1,7),(2,5),(3,4),(6,8)]=>[7,5,4,3,2,8,1,6]=>[4,5,8,1,2,7,6,3]=>([(0,2),(0,3),(0,7),(1,2),(1,3),(1,7),(2,6),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,8),(2,5),(3,4),(6,7)]=>[8,5,4,3,2,7,6,1]=>[4,5,7,1,2,8,3,6]=>([(0,1),(0,7),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,7),(5,7),(6,7)],8)
[(1,3),(2,7),(4,5),(6,8)]=>[3,7,1,5,4,8,2,6]=>[5,3,2,8,1,7,6,4]=>([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,5),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
[(1,2),(3,7),(4,5),(6,8)]=>[2,1,7,5,4,8,3,6]=>[2,1,5,8,3,7,6,4]=>([(0,1),(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,2),(3,8),(4,5),(6,7)]=>[2,1,8,5,4,7,6,3]=>[2,1,5,7,3,8,4,6]=>([(0,1),(2,5),(2,7),(3,4),(3,7),(4,6),(5,6),(6,7)],8)
[(1,3),(2,8),(4,5),(6,7)]=>[3,8,1,5,4,7,6,2]=>[5,3,2,7,1,8,4,6]=>([(0,1),(0,5),(1,4),(2,3),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
[(1,8),(2,7),(3,4),(5,6)]=>[8,7,4,3,6,5,2,1]=>[4,6,7,1,8,2,3,5]=>([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,6),(2,7),(3,4),(3,5),(4,6),(4,7),(5,6),(5,7)],8)
[(1,7),(2,8),(3,5),(4,6)]=>[7,8,5,6,3,4,1,2]=>[6,5,8,7,2,1,4,3]=>([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,7),(5,6)],8)
[(1,6),(2,8),(3,5),(4,7)]=>[6,8,5,7,3,1,4,2]=>[7,5,8,6,2,4,1,3]=>([(0,2),(0,3),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,6),(1,7),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,5),(2,7),(3,6),(4,8)]=>[5,7,6,8,1,3,2,4]=>[8,6,7,5,4,2,3,1]=>([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,5),(2,6),(3,7),(4,8)]=>[5,6,7,8,1,2,3,4]=>[8,7,6,5,4,3,2,1]=>([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,4),(2,6),(3,7),(5,8)]=>[4,6,7,1,8,2,3,5]=>[8,7,4,3,6,5,2,1]=>([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,3),(2,6),(4,7),(5,8)]=>[3,6,1,7,8,2,4,5]=>[8,3,2,7,6,5,4,1]=>([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,2),(3,6),(4,7),(5,8)]=>[2,1,6,7,8,3,4,5]=>[2,1,8,7,6,5,4,3]=>([(0,1),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,2),(3,5),(4,7),(6,8)]=>[2,1,5,7,3,8,4,6]=>[2,1,8,5,4,7,6,3]=>([(0,1),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,3),(2,5),(4,7),(6,8)]=>[3,5,1,7,2,8,4,6]=>[8,3,2,5,4,7,6,1]=>([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,4),(2,5),(3,7),(6,8)]=>[4,5,7,1,2,8,3,6]=>[8,5,4,3,2,7,6,1]=>([(0,1),(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,6),(2,3),(4,7),(5,8)]=>[6,3,2,7,8,1,4,5]=>[3,8,1,7,6,5,4,2]=>([(0,1),(0,7),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,5),(2,3),(4,7),(6,8)]=>[5,3,2,7,1,8,4,6]=>[3,8,1,5,4,7,6,2]=>([(0,1),(0,7),(1,6),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,4),(2,3),(5,7),(6,8)]=>[4,3,2,1,7,8,5,6]=>[3,4,1,2,8,7,6,5]=>([(0,2),(0,3),(1,2),(1,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,3),(2,4),(5,7),(6,8)]=>[3,4,1,2,7,8,5,6]=>[4,3,2,1,8,7,6,5]=>([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(5,6),(5,7),(6,7)],8)
[(1,2),(3,4),(5,7),(6,8)]=>[2,1,4,3,7,8,5,6]=>[2,1,4,3,8,7,6,5]=>([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,2),(3,4),(5,8),(6,7)]=>[2,1,4,3,8,7,6,5]=>[2,1,4,3,7,8,5,6]=>([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8)
[(1,3),(2,4),(5,8),(6,7)]=>[3,4,1,2,8,7,6,5]=>[4,3,2,1,7,8,5,6]=>([(0,2),(0,3),(1,2),(1,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,4),(2,3),(5,8),(6,7)]=>[4,3,2,1,8,7,6,5]=>[3,4,1,2,7,8,5,6]=>([(0,6),(0,7),(1,3),(1,4),(2,3),(2,4),(5,6),(5,7)],8)
[(1,5),(2,3),(4,8),(6,7)]=>[5,3,2,8,1,7,6,4]=>[3,7,1,5,4,8,2,6]=>([(0,3),(0,7),(1,2),(1,7),(2,6),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,8),(2,3),(4,7),(5,6)]=>[8,3,2,7,6,5,4,1]=>[3,6,1,7,8,2,4,5]=>([(0,1),(0,7),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,7),(5,7),(6,7)],8)
[(1,4),(2,5),(3,8),(6,7)]=>[4,5,8,1,2,7,6,3]=>[7,5,4,3,2,8,1,6]=>([(0,1),(0,7),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,3),(2,5),(4,8),(6,7)]=>[3,5,1,8,2,7,6,4]=>[7,3,2,5,4,8,1,6]=>([(0,1),(0,7),(1,6),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,2),(3,5),(4,8),(6,7)]=>[2,1,5,8,3,7,6,4]=>[2,1,7,5,4,8,3,6]=>([(0,1),(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,6),(2,5),(3,8),(4,7)]=>[6,5,8,7,2,1,4,3]=>[7,8,5,6,3,4,1,2]=>([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
[(1,7),(2,5),(3,8),(4,6)]=>[7,5,8,6,2,4,1,3]=>[6,8,5,7,3,1,4,2]=>([(0,2),(0,3),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,6),(1,7),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,8),(2,6),(3,7),(4,5)]=>[8,6,7,5,4,2,3,1]=>[5,7,6,8,1,3,2,4]=>([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,2),(3,8),(4,7),(5,6)]=>[2,1,8,7,6,5,4,3]=>[2,1,6,7,8,3,4,5]=>([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
[(1,3),(2,8),(4,7),(5,6)]=>[3,8,1,7,6,5,4,2]=>[6,3,2,7,8,1,4,5]=>([(0,2),(0,3),(0,7),(1,2),(1,3),(1,7),(2,6),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
[(1,8),(2,7),(3,6),(4,5)]=>[8,7,6,5,4,3,2,1]=>[5,6,7,8,1,2,3,4]=>([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8)
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
Corteel
Description
Corteel's map interchanging the number of crossings and the number of nestings of a permutation.
This involution creates a labelled bicoloured Motzkin path, using the Foata-Zeilberger map. In the corresponding bump diagram, each label records the number of arcs nesting the given arc. Then each label is replaced by its complement, and the inverse of the Foata-Zeilberger map is applied.
This involution creates a labelled bicoloured Motzkin path, using the Foata-Zeilberger map. In the corresponding bump diagram, each label records the number of arcs nesting the given arc. Then each label is replaced by its complement, and the inverse of the Foata-Zeilberger map is applied.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
searching the database
Sorry, this map was not found in the database.